Home
Class 12
MATHS
Let vec a= hat j+hat j,vec b=hat j+hat ...

Let `vec a= hat j+hat j,vec b=hat j+hat k` and `vec c=alpha vec a+beta vec b`. If the vectors, `hat i-2hat j+hat k,3 hat i+2 hat j-hat k` and `vec c` are coplanar then `alpha/beta` is

A

`1`

B

`2`

C

`3`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the ratio \(\frac{\alpha}{\beta}\) given that the vectors \(\vec{a} = \hat{i} + \hat{j}\), \(\vec{b} = \hat{j} + \hat{k}\), and \(\vec{c} = \alpha \vec{a} + \beta \vec{b}\) are coplanar with the vectors \(\hat{i} - 2\hat{j} + \hat{k}\) and \(3\hat{i} + 2\hat{j} - \hat{k}\). ### Step 1: Write the expressions for the vectors We have: \[ \vec{a} = \hat{i} + \hat{j} \] \[ \vec{b} = \hat{j} + \hat{k} \] Thus, we can express \(\vec{c}\) as: \[ \vec{c} = \alpha \vec{a} + \beta \vec{b} = \alpha(\hat{i} + \hat{j}) + \beta(\hat{j} + \hat{k}) = \alpha \hat{i} + (\alpha + \beta) \hat{j} + \beta \hat{k} \] ### Step 2: Set up the vectors for coplanarity The three vectors we are considering for coplanarity are: 1. \(\vec{u} = \hat{i} - 2\hat{j} + \hat{k}\) 2. \(\vec{v} = 3\hat{i} + 2\hat{j} - \hat{k}\) 3. \(\vec{c} = \alpha \hat{i} + (\alpha + \beta) \hat{j} + \beta \hat{k}\) ### Step 3: Use the scalar triple product condition For the vectors to be coplanar, the scalar triple product must equal zero: \[ \vec{u} \cdot (\vec{v} \times \vec{c}) = 0 \] ### Step 4: Calculate the cross product \(\vec{v} \times \vec{c}\) We can calculate the cross product using the determinant: \[ \vec{v} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -1 \\ \alpha & \alpha + \beta & \beta \end{vmatrix} \] Calculating this determinant, we expand it: \[ = \hat{i} \begin{vmatrix} 2 & -1 \\ \alpha + \beta & \beta \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -1 \\ \alpha & \beta \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 2 \\ \alpha & \alpha + \beta \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 2 & -1 \\ \alpha + \beta & \beta \end{vmatrix} = 2\beta - (-1)(\alpha + \beta) = 2\beta + \alpha + \beta = \alpha + 3\beta\) 2. \(\begin{vmatrix} 3 & -1 \\ \alpha & \beta \end{vmatrix} = 3\beta - (-1)(\alpha) = 3\beta + \alpha\) 3. \(\begin{vmatrix} 3 & 2 \\ \alpha & \alpha + \beta \end{vmatrix} = 3(\alpha + \beta) - 2\alpha = 3\alpha + 3\beta - 2\alpha = \alpha + 3\beta\) So, we have: \[ \vec{v} \times \vec{c} = (\alpha + 3\beta)\hat{i} - (3\beta + \alpha)\hat{j} + (\alpha + 3\beta)\hat{k} \] ### Step 5: Calculate the dot product \(\vec{u} \cdot (\vec{v} \times \vec{c})\) Now we compute: \[ \vec{u} \cdot (\vec{v} \times \vec{c}) = (1)(\alpha + 3\beta) + (-2)(- (3\beta + \alpha)) + (1)(\alpha + 3\beta) \] This simplifies to: \[ = \alpha + 3\beta + 6\beta + 2\alpha + \alpha + 3\beta = 4\alpha + 12\beta \] ### Step 6: Set the equation to zero Setting the scalar triple product to zero for coplanarity: \[ 4\alpha + 12\beta = 0 \] This gives: \[ 4\alpha = -12\beta \implies \frac{\alpha}{\beta} = -\frac{12}{4} = -3 \] ### Final Answer Thus, the value of \(\frac{\alpha}{\beta}\) is: \[ \frac{\alpha}{\beta} = -3 \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find [ vec a vec b vec c], when (i) vec a=2 hat i-3 hat j , vec b= hat i+ hat j- hat k and vec c=3 hat i- hat k (ii) vec a= hat i-2 hat j+3 hat k , vec b=2 hat i+ hat j- hat k and vec c= hat j+ hat k

Find ( vec a+3 vec b).(2 vec a- vec b) , If vec a= hat i+ hat j+2 hat k and vec b=3 hat i+2 hat j- hat k

Find [ vec a\ vec b\ vec c] , when : vec a= hat i-2 hat j+3 hat k ,\ vec b=2 hat i+ hat j- hat k\ a n d\ vec c= hat j+ hat k .

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=5 and vec ax vec b= vec c , then vec b is equal to

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find [ vec a\ vec b\ vec c] , when : vec a=2 hat i-3 hat j ,\ vec b= hat i+ hat j- hat k\ a n d\ vec c=3 hat i- hat k .

Find vec a . ( vec b xx vec c), if vec a=2 hat i+ hat j+3 hat k , vec b= hat i+2 hat j+ hat k and c=3 hat i+ hat j+2 hat k .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. Given the vectors vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2ha...

    Text Solution

    |

  2. Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec ...

    Text Solution

    |

  3. Let vec a= hat j+hat j,vec b=hat j+hat k and vec c=alpha vec a+beta v...

    Text Solution

    |

  4. A rigid body rotates about an axis through the origin with an angular ...

    Text Solution

    |

  5. A rigid body rotates with constant angular velocity omaga about the li...

    Text Solution

    |

  6. Consider DeltaABC with A=(veca);B=(vecb) and C=(vecc). If vecb.(veca+v...

    Text Solution

    |

  7. Given unit vectors m, n and p such that angle between m and n. Angle b...

    Text Solution

    |

  8. If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(v...

    Text Solution

    |

  9. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  10. If vector vec i+ 2vec j + 2vec k is rotated through an angle of 90^@...

    Text Solution

    |

  11. 10 different vectors are lying on a plane out of which four are parall...

    Text Solution

    |

  12. If hat(a) is a unit vector and projection of x along hat(a) is 2 units...

    Text Solution

    |

  13. If a, b and c are any three non-zero vectors, then the component of at...

    Text Solution

    |

  14. The position vector of a point P is vecr=xhat(i)+yhat(j)+zhat(k), wher...

    Text Solution

    |

  15. . Let a, b > 0 and vecalpha=hati/a+4hatj/b+bhatk and beta=bhati+ahatj+...

    Text Solution

    |

  16. If veca, vecb and vecc are any three vectors forming a linearly indepe...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. If in a triangleABC, BC=(e)/(|e|)-(f)/(|f|) and AC=(2e)/(|e|): |e|ne|f...

    Text Solution

    |

  19. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  20. In triangle ABC the mid point of the sides AB, BC and AC respectively ...

    Text Solution

    |