Home
Class 12
MATHS
Consider DeltaABC with A=(veca);B=(vecb)...

Consider `DeltaABC` with `A=(veca);B=(vecb) and C=(vecc).` If `vecb.(veca+vecc)=vecb.vecb+veca.vecc;|vecb-veca|=3;|vecc-vecb|=4` then the angle between the medians `AvecM and BvecD` is

A

`pi-cos^(-1)((1)/(5sqrt(13)))`

B

`pi-cos^(-1)((1)/(13sqrt(5)))`

C

`cos^(-1)((1)/(5sqrt(13)))`

D

`cos^(-1)((1)/(13sqrt(5)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the medians \( AM \) and \( BD \) of triangle \( ABC \) given the conditions. Let's break down the solution step by step. ### Step 1: Understand the Given Information We have: - Vectors \( \vec{A} = \vec{a} \), \( \vec{B} = \vec{b} \), \( \vec{C} = \vec{c} \). - The equation \( \vec{b} \cdot (\vec{a} + \vec{c}) = \vec{b} \cdot \vec{b} + \vec{a} \cdot \vec{c} \). - The magnitudes \( |\vec{b} - \vec{a}| = 3 \) and \( |\vec{c} - \vec{b}| = 4 \). ### Step 2: Find the Position Vectors of the Medians The median \( AM \) connects vertex \( A \) to the midpoint \( M \) of side \( BC \): \[ \vec{M} = \frac{\vec{b} + \vec{c}}{2} \] Thus, the vector \( \vec{AM} \) is: \[ \vec{AM} = \vec{M} - \vec{A} = \frac{\vec{b} + \vec{c}}{2} - \vec{a} = \frac{\vec{b} + \vec{c} - 2\vec{a}}{2} \] The median \( BD \) connects vertex \( B \) to the midpoint \( D \) of side \( AC \): \[ \vec{D} = \frac{\vec{a} + \vec{c}}{2} \] Thus, the vector \( \vec{BD} \) is: \[ \vec{BD} = \vec{D} - \vec{B} = \frac{\vec{a} + \vec{c}}{2} - \vec{b} = \frac{\vec{a} + \vec{c} - 2\vec{b}}{2} \] ### Step 3: Calculate the Dot Product of the Medians To find the angle \( \theta \) between the medians \( AM \) and \( BD \), we need to compute the dot product \( \vec{AM} \cdot \vec{BD} \): \[ \vec{AM} \cdot \vec{BD} = \left( \frac{\vec{b} + \vec{c} - 2\vec{a}}{2} \right) \cdot \left( \frac{\vec{a} + \vec{c} - 2\vec{b}}{2} \right) \] This simplifies to: \[ \frac{1}{4} \left( (\vec{b} + \vec{c} - 2\vec{a}) \cdot (\vec{a} + \vec{c} - 2\vec{b}) \right) \] ### Step 4: Expand the Dot Product Expanding the dot product: \[ \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} - 2\vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{c} - 2\vec{a} \cdot \vec{b} - 2\vec{c} \cdot \vec{b} + 4\vec{a} \cdot \vec{b} \] Combine like terms to simplify. ### Step 5: Use Given Conditions Using the conditions \( |\vec{b} - \vec{a}| = 3 \) and \( |\vec{c} - \vec{b}| = 4 \), we can express these in terms of dot products: \[ |\vec{b} - \vec{a}|^2 = 9 \quad \Rightarrow \quad \vec{b} \cdot \vec{b} - 2\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{a} = 9 \] \[ |\vec{c} - \vec{b}|^2 = 16 \quad \Rightarrow \quad \vec{c} \cdot \vec{c} - 2\vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{b} = 16 \] ### Step 6: Calculate the Magnitudes of the Medians The magnitudes of \( \vec{AM} \) and \( \vec{BD} \) can be computed similarly using their definitions. ### Step 7: Use the Cosine Formula Using the cosine formula: \[ \cos \theta = \frac{\vec{AM} \cdot \vec{BD}}{|\vec{AM}| |\vec{BD}|} \] Substituting the values will give us \( \theta \). ### Step 8: Solve for \( \theta \) After substituting and simplifying, we will find \( \theta \). ### Final Answer The angle \( \theta \) between the medians \( AM \) and \( BD \) is given by: \[ \theta = \cos^{-1} \left( -\frac{1}{2} \right) = 120^\circ \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca+vecb+vecc=0,|veca|=3,|vecb|=5,|vecc|=7 find the angle between veca and vecb

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. A rigid body rotates about an axis through the origin with an angular ...

    Text Solution

    |

  2. A rigid body rotates with constant angular velocity omaga about the li...

    Text Solution

    |

  3. Consider DeltaABC with A=(veca);B=(vecb) and C=(vecc). If vecb.(veca+v...

    Text Solution

    |

  4. Given unit vectors m, n and p such that angle between m and n. Angle b...

    Text Solution

    |

  5. If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(v...

    Text Solution

    |

  6. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  7. If vector vec i+ 2vec j + 2vec k is rotated through an angle of 90^@...

    Text Solution

    |

  8. 10 different vectors are lying on a plane out of which four are parall...

    Text Solution

    |

  9. If hat(a) is a unit vector and projection of x along hat(a) is 2 units...

    Text Solution

    |

  10. If a, b and c are any three non-zero vectors, then the component of at...

    Text Solution

    |

  11. The position vector of a point P is vecr=xhat(i)+yhat(j)+zhat(k), wher...

    Text Solution

    |

  12. . Let a, b > 0 and vecalpha=hati/a+4hatj/b+bhatk and beta=bhati+ahatj+...

    Text Solution

    |

  13. If veca, vecb and vecc are any three vectors forming a linearly indepe...

    Text Solution

    |

  14. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  15. If in a triangleABC, BC=(e)/(|e|)-(f)/(|f|) and AC=(2e)/(|e|): |e|ne|f...

    Text Solution

    |

  16. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  17. In triangle ABC the mid point of the sides AB, BC and AC respectively ...

    Text Solution

    |

  18. The angle between the lines whose directionn cosines are given by 2l-m...

    Text Solution

    |

  19. A line makes an angle theta both with x-axis and y-axis. A possible ra...

    Text Solution

    |

  20. Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 an...

    Text Solution

    |