Home
Class 12
MATHS
. Let a, b > 0 and vecalpha=hati/a+4hatj...

. Let a, b > 0 and `vecalpha=hati/a+4hatj/b+bhatk` and `beta=bhati+ahatj+hatk/b` then the maximum value of `30/(5+alpha.beta)`

A

`3`

B

`2`

C

`4`

D

`8`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( \frac{30}{5 + \vec{\alpha} \cdot \vec{\beta}} \), we will first compute the dot product \( \vec{\alpha} \cdot \vec{\beta} \) and then analyze its minimum value. ### Step 1: Define the vectors The vectors are given as: \[ \vec{\alpha} = \frac{\hat{i}}{a} + \frac{4\hat{j}}{b} + b\hat{k} \] \[ \vec{\beta} = b\hat{i} + a\hat{j} + \frac{\hat{k}}{b} \] ### Step 2: Compute the dot product \( \vec{\alpha} \cdot \vec{\beta} \) The dot product \( \vec{\alpha} \cdot \vec{\beta} \) can be calculated as follows: \[ \vec{\alpha} \cdot \vec{\beta} = \left(\frac{\hat{i}}{a} \cdot b\hat{i}\right) + \left(\frac{4\hat{j}}{b} \cdot a\hat{j}\right) + \left(b\hat{k} \cdot \frac{\hat{k}}{b}\right) \] Calculating each term: 1. \( \frac{\hat{i}}{a} \cdot b\hat{i} = \frac{b}{a} \) 2. \( \frac{4\hat{j}}{b} \cdot a\hat{j} = \frac{4a}{b} \) 3. \( b\hat{k} \cdot \frac{\hat{k}}{b} = 1 \) Combining these, we have: \[ \vec{\alpha} \cdot \vec{\beta} = \frac{b}{a} + \frac{4a}{b} + 1 \] ### Step 3: Find the minimum value of \( \vec{\alpha} \cdot \vec{\beta} \) To find the minimum value of \( \frac{b}{a} + \frac{4a}{b} + 1 \), we can apply the AM-GM inequality: \[ \frac{\frac{b}{a} + \frac{4a}{b}}{2} \geq \sqrt{\frac{b}{a} \cdot \frac{4a}{b}} = \sqrt{4} = 2 \] Thus, \[ \frac{b}{a} + \frac{4a}{b} \geq 4 \] Adding 1 to both sides gives: \[ \frac{b}{a} + \frac{4a}{b} + 1 \geq 5 \] The minimum value of \( \vec{\alpha} \cdot \vec{\beta} \) is therefore 5. ### Step 4: Substitute into the original expression Now substituting this minimum value into the expression \( \frac{30}{5 + \vec{\alpha} \cdot \vec{\beta}} \): \[ \frac{30}{5 + \vec{\alpha} \cdot \vec{\beta}} \leq \frac{30}{5 + 5} = \frac{30}{10} = 3 \] ### Conclusion Thus, the maximum value of \( \frac{30}{5 + \vec{\alpha} \cdot \vec{\beta}} \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahattj+(1)/(b)hatk , then the maximum value of (10)/(5+alpha*beta) is

If a=2hati+2hatj-8hatk and b=hati+3hatj-4hatk , then the magnitude of a+b is equal to

If a =2hati+3hatj+4hatk and b =4hati+3hatj +2hatk ,find the angel between a and b.

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

If a vector 2hati +3hatj +8hatk is perpendicular to the vector 4hati -4hatj + alphahatk, then the value of alpha is

If a vector 2hati +3hatj +8hatk is perpendicular to the vector 4hati -4hatj + alphahatk, then the value of alpha is

The angle between the two vectors A=3 hati+4hatj+5hatk and B=3hati+4hatj-5hatk is

Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a hatj+10 hatk, vec gamma=12hati+20hatj+a hatk be three vectors, then vec alpha, vec beta and vec gamma are linearly independent for :

Two vectors vecalpha=3hati+4hatj and vecbeta=5hati+2hatj-14hatk have the same initial point then their angulr bisector having magnitude 7/3 be (A) 7/(3sqrt(6))(2hati+hatj-hatk) (B) 7/(3sqrt(3))(\hati+hatj-hatk) (C) 7/(3sqrt(3))(hati-hatj+hatk) (D) 7/(3sqrt(3))(hati-hatj-hatk)

Given vec alpha=3hati+hatj+2hatk and vec beta=hati-2hatj-4hatk are the position vectors of the points A and B Then the distance of the point hati+hatj+hatk from the plane passing through B and perpendicular to AB is (a) 5 (b) 10 (c) 15 (d) 20

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If a, b and c are any three non-zero vectors, then the component of at...

    Text Solution

    |

  2. The position vector of a point P is vecr=xhat(i)+yhat(j)+zhat(k), wher...

    Text Solution

    |

  3. . Let a, b > 0 and vecalpha=hati/a+4hatj/b+bhatk and beta=bhati+ahatj+...

    Text Solution

    |

  4. If veca, vecb and vecc are any three vectors forming a linearly indepe...

    Text Solution

    |

  5. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  6. If in a triangleABC, BC=(e)/(|e|)-(f)/(|f|) and AC=(2e)/(|e|): |e|ne|f...

    Text Solution

    |

  7. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  8. In triangle ABC the mid point of the sides AB, BC and AC respectively ...

    Text Solution

    |

  9. The angle between the lines whose directionn cosines are given by 2l-m...

    Text Solution

    |

  10. A line makes an angle theta both with x-axis and y-axis. A possible ra...

    Text Solution

    |

  11. Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 an...

    Text Solution

    |

  12. Find the perpendicular distance of a corner of a cube of unit side len...

    Text Solution

    |

  13. If p,q are two-collinear vectors such that (b-c)ptimesq+(c-a)p+(a-b)q...

    Text Solution

    |

  14. Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+h...

    Text Solution

    |

  15. A parallelepiped is formed by planes drawn parallel to coordinate axes...

    Text Solution

    |

  16. Let a,b,c be three non-coplanar vectors and d be a non-zerro vector, w...

    Text Solution

    |

  17. If alpha(axxb)+beta(bxxc)+gamma(cxxa)=0, then

    Text Solution

    |

  18. Let area of faces triangleOAB=lambda1, triangleOAC=lambda2, triangleOB...

    Text Solution

    |

  19. Given four non zero vectors bar a,bar b,bar c and bar d. The vectors ...

    Text Solution

    |

  20. The shortest distance between a diagonal of a unit cube and the edge s...

    Text Solution

    |