Home
Class 12
MATHS
Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+ha...

Let `a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+hat(k) and d=hat(i)+hat(j)-hat(k)`. Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to

A

X-axis

B

Y-axis

C

Both X and Y axes

D

Both y and z-axes

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the line of intersection of two planes defined by the vectors \( \mathbf{a}, \mathbf{b} \) and \( \mathbf{c}, \mathbf{d} \). Then, we will determine the direction of this line of intersection and check to which vector it is perpendicular. ### Step 1: Identify the vectors The given vectors are: \[ \mathbf{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{b} = -\hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{c} = \hat{i} - \hat{j} + \hat{k} \] \[ \mathbf{d} = \hat{i} + \hat{j} - \hat{k} \] ### Step 2: Find the normal vectors of the planes The normal vector of a plane defined by two vectors \( \mathbf{u} \) and \( \mathbf{v} \) can be found using the cross product \( \mathbf{n} = \mathbf{u} \times \mathbf{v} \). **For the plane defined by \( \mathbf{a} \) and \( \mathbf{b} \):** \[ \mathbf{n_1} = \mathbf{a} \times \mathbf{b} \] Calculating \( \mathbf{n_1} \): \[ \mathbf{n_1} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{n_1} = \hat{i} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} \] \[ = \hat{i}(1 - 1) - \hat{j}(1 + 1) + \hat{k}(1 + 1) \] \[ = 0\hat{i} - 2\hat{j} + 2\hat{k} = -2\hat{j} + 2\hat{k} \] Thus, \[ \mathbf{n_1} = -2\hat{j} + 2\hat{k} \] **For the plane defined by \( \mathbf{c} \) and \( \mathbf{d} \):** \[ \mathbf{n_2} = \mathbf{c} \times \mathbf{d} \] Calculating \( \mathbf{n_2} \): \[ \mathbf{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{n_2} = \hat{i} \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i}((-1)(-1) - (1)(1)) - \hat{j}((1)(-1) - (1)(1)) + \hat{k}((1)(1) - (-1)(1)) \] \[ = \hat{i}(1 - 1) - \hat{j}(-1 - 1) + \hat{k}(1 + 1) \] \[ = 0\hat{i} + 2\hat{j} + 2\hat{k} \] Thus, \[ \mathbf{n_2} = 2\hat{j} + 2\hat{k} \] ### Step 3: Find the direction of the line of intersection The direction of the line of intersection of the two planes can be found by taking the cross product of the normal vectors: \[ \mathbf{d} = \mathbf{n_1} \times \mathbf{n_2} \] Calculating \( \mathbf{d} \): \[ \mathbf{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & 2 \\ 0 & 2 & 2 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{d} = \hat{i} \begin{vmatrix} -2 & 2 \\ 2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 2 \\ 0 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & -2 \\ 0 & 2 \end{vmatrix} \] \[ = \hat{i}((-2)(2) - (2)(0)) - \hat{j}(0 - 0) + \hat{k}(0 - 0) \] \[ = -4\hat{i} + 0\hat{j} + 0\hat{k} \] Thus, \[ \mathbf{d} = -4\hat{i} \] ### Step 4: Determine to which vector the line is perpendicular The line of intersection is represented by the direction vector \( \mathbf{d} = -4\hat{i} \). We need to check which of the original vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \) is perpendicular to this direction vector. A vector \( \mathbf{v} \) is perpendicular to another vector \( \mathbf{w} \) if their dot product is zero: \[ \mathbf{v} \cdot \mathbf{w} = 0 \] Calculating the dot products: 1. \( \mathbf{a} \cdot \mathbf{d} = (1)(-4) + (1)(0) + (1)(0) = -4 \) (not perpendicular) 2. \( \mathbf{b} \cdot \mathbf{d} = (-1)(-4) + (1)(0) + (1)(0) = 4 \) (not perpendicular) 3. \( \mathbf{c} \cdot \mathbf{d} = (1)(-4) + (-1)(0) + (1)(0) = -4 \) (not perpendicular) 4. \( \mathbf{d} \cdot \mathbf{d} = (1)(-4) + (1)(0) + (-1)(0) = -4 \) (not perpendicular) None of the vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \) are perpendicular to the line of intersection. ### Conclusion: The line of intersection of the planes determined by \( \mathbf{a}, \mathbf{b} \) and \( \mathbf{c}, \mathbf{d} \) is not perpendicular to any of the given vectors.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

The value of hat(i).(hat(j) xx hat(k))+ hat(j). (hat(i) xxhat(k)) + hat(k) . (hat(i) xx hat(j))

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

A vector equally inclined to the vectors hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) then the plane containing them is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

(a.hat i ) hat i + ( a. hat j) hat j + (a.hat k) hat k =

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i- hat k) are collinear.

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If in a triangleABC, BC=(e)/(|e|)-(f)/(|f|) and AC=(2e)/(|e|): |e|ne|f...

    Text Solution

    |

  2. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  3. In triangle ABC the mid point of the sides AB, BC and AC respectively ...

    Text Solution

    |

  4. The angle between the lines whose directionn cosines are given by 2l-m...

    Text Solution

    |

  5. A line makes an angle theta both with x-axis and y-axis. A possible ra...

    Text Solution

    |

  6. Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 an...

    Text Solution

    |

  7. Find the perpendicular distance of a corner of a cube of unit side len...

    Text Solution

    |

  8. If p,q are two-collinear vectors such that (b-c)ptimesq+(c-a)p+(a-b)q...

    Text Solution

    |

  9. Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+h...

    Text Solution

    |

  10. A parallelepiped is formed by planes drawn parallel to coordinate axes...

    Text Solution

    |

  11. Let a,b,c be three non-coplanar vectors and d be a non-zerro vector, w...

    Text Solution

    |

  12. If alpha(axxb)+beta(bxxc)+gamma(cxxa)=0, then

    Text Solution

    |

  13. Let area of faces triangleOAB=lambda1, triangleOAC=lambda2, triangleOB...

    Text Solution

    |

  14. Given four non zero vectors bar a,bar b,bar c and bar d. The vectors ...

    Text Solution

    |

  15. The shortest distance between a diagonal of a unit cube and the edge s...

    Text Solution

    |

  16. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  17. If the two adjacent sides of two rectangles are represented by vecto...

    Text Solution

    |

  18. Let veca,vec b,vec c are three vectors along the adjacent edges ofa t...

    Text Solution

    |

  19. If the angle between the vectors vec(a)=hat(i)+(cos x)hat(j)+hat(k) a...

    Text Solution

    |

  20. If position vectors of the points A, B and C are a, b and c respectiv...

    Text Solution

    |