Home
Class 12
MATHS
Let veca,vec b,vec c are three vectors ...

Let `veca,vec b,vec c` are three vectors along the adjacent edges ofa tetrahedron, if `|vec a|=|vec b|=|vec c|=2` and `vec a*vec b=vec b*vec c=vec c * vec a=2` then volume of tetrahedron is (A) `1/sqrt2` (B) `2/sqrt3` (C) `sqrt3/2` (D) `2sqrt2/3`

A

`(1)/(sqrt(2))`

B

`(2)/(sqrt(3))`

C

`(sqrt(3))/(2)`

D

`(2sqrt(2))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we can use the formula for the volume \(V\) of a tetrahedron given by: \[ V = \frac{1}{6} |\vec{a} \cdot (\vec{b} \times \vec{c})| \] ### Step 1: Calculate the magnitudes and dot products Given: - \(|\vec{a}| = |\vec{b}| = |\vec{c}| = 2\) - \(\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 2\) We can express the dot products in terms of the magnitudes of the vectors: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta_{ab} = 2 \cdot 2 \cdot \cos \theta_{ab} = 4 \cos \theta_{ab} \] Setting this equal to the given value of 2: \[ 4 \cos \theta_{ab} = 2 \implies \cos \theta_{ab} = \frac{1}{2} \implies \theta_{ab} = 60^\circ \] Similarly, we can find that \(\theta_{bc} = 60^\circ\) and \(\theta_{ca} = 60^\circ\). ### Step 2: Calculate the scalar triple product To find \(|\vec{a} \cdot (\vec{b} \times \vec{c})|\), we can use the formula: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin \theta_{bc} \] Since \(|\vec{b}| = |\vec{c}| = 2\) and \(\sin 60^\circ = \frac{\sqrt{3}}{2}\): \[ |\vec{b} \times \vec{c}| = 2 \cdot 2 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \] Now, we can find \(|\vec{a} \cdot (\vec{b} \times \vec{c})|\): \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| \cos \theta_{a(b \times c)} \] Since \(\theta_{a(b \times c)}\) is also \(60^\circ\): \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = 2 \cdot 2\sqrt{3} \cdot \frac{1}{2} = 2\sqrt{3} \] ### Step 3: Calculate the volume Now we can substitute this back into the volume formula: \[ V = \frac{1}{6} |\vec{a} \cdot (\vec{b} \times \vec{c})| = \frac{1}{6} (2\sqrt{3}) = \frac{\sqrt{3}}{3} \] ### Step 4: Final answer The volume of the tetrahedron is: \[ V = \frac{\sqrt{3}}{3} \] ### Conclusion The correct answer is: \[ \text{(C) } \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let vec a , vec ba n d vec c be three verctors such that vec a!=0,| vec a|=| vec c|=1,| vec b|=4 and | vec bxx vec c|=sqrt(15)dot If vec b-2 vec c=lambda vec a , then find the value of lambda

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a,vec b,vec c are three unit vectors,then the maximum value of (1)/(5)(|vec a+vec b-vec c|^(2)+|vec b+vec c-vec a|^(2)+|vec c+vec a-vec b|^(2)) is equal to:

If vec a ,\ vec b ,\ vec c are three vectors such that vec adot vec b= vec adot vec c then show that vec a=0\ or ,\ vec b=c\ or\ vec a_|_( vec b- vec c)dot

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

Prove that [[ vec a+ vec b, vec b+ vec c, vec c+ vec a]]=2[ [vec a, vec b, vec c]]dot

vec a , vec b , vec c are three vectors such that |vec a | = 5 | vec b | =8, |vec c | = 3 if vec a + vec b + vec c = 8 hati+ 6hatj , find the value of vec a , vec b +vec b .vec c + vec c .vec a

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If in a triangleABC, BC=(e)/(|e|)-(f)/(|f|) and AC=(2e)/(|e|): |e|ne|f...

    Text Solution

    |

  2. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  3. In triangle ABC the mid point of the sides AB, BC and AC respectively ...

    Text Solution

    |

  4. The angle between the lines whose directionn cosines are given by 2l-m...

    Text Solution

    |

  5. A line makes an angle theta both with x-axis and y-axis. A possible ra...

    Text Solution

    |

  6. Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 an...

    Text Solution

    |

  7. Find the perpendicular distance of a corner of a cube of unit side len...

    Text Solution

    |

  8. If p,q are two-collinear vectors such that (b-c)ptimesq+(c-a)p+(a-b)q...

    Text Solution

    |

  9. Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+h...

    Text Solution

    |

  10. A parallelepiped is formed by planes drawn parallel to coordinate axes...

    Text Solution

    |

  11. Let a,b,c be three non-coplanar vectors and d be a non-zerro vector, w...

    Text Solution

    |

  12. If alpha(axxb)+beta(bxxc)+gamma(cxxa)=0, then

    Text Solution

    |

  13. Let area of faces triangleOAB=lambda1, triangleOAC=lambda2, triangleOB...

    Text Solution

    |

  14. Given four non zero vectors bar a,bar b,bar c and bar d. The vectors ...

    Text Solution

    |

  15. The shortest distance between a diagonal of a unit cube and the edge s...

    Text Solution

    |

  16. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  17. If the two adjacent sides of two rectangles are represented by vecto...

    Text Solution

    |

  18. Let veca,vec b,vec c are three vectors along the adjacent edges ofa t...

    Text Solution

    |

  19. If the angle between the vectors vec(a)=hat(i)+(cos x)hat(j)+hat(k) a...

    Text Solution

    |

  20. If position vectors of the points A, B and C are a, b and c respectiv...

    Text Solution

    |