Given matrix `B=[{:(,1,1),(,8,3):}]`. Find the matrix X if, `X=B^2-4B.` Hence, solve for a and b given `X[{:(,a),(,b):}]=[{:(,5),(,50):}]`.
Text Solution
Verified by Experts
The correct Answer is:
a = 1, b = 10
Topper's Solved these Questions
MATHEMATICS -2017
ICSE|Exercise SECTION- B|30 Videos
MATHEMATICS -2017
ICSE|Exercise SECTION- B|30 Videos
MATHEMATICS -2016
ICSE|Exercise SECTION- B|30 Videos
MATHEMATICS- 2015
ICSE|Exercise SECTION- B|36 Videos
Similar Questions
Explore conceptually related problems
For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)
Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.
(i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find the matrix A and B. (ii) if X+Y=[{:(2,1),(1,2):}]and 2X-Y=[{:(1,2),(2,1):}] then find X and Y .
Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and B=[{:(,4,x),(,0,1):}]
Given A= [(3,4),(4,-3)] and B= [(24),(7)] , find the matrix X such that AX= B.
Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]
If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,
Given A= [(3,6),(-2,-8)] and B= [-2" " 16] , find the matrix X such that XA= B
Matrix A=[(0, 2b,-2) ,(3 ,1, 3), (3a,3,-1)] is given to be symmetric, find the values of a and b .
If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the matrix X such that AX=B.