Home
Class 10
MATHS
If A=[(2,3),(5,7)], B=[(0,4),(-1,7)]andC...

If `A=[(2,3),(5,7)], B=[(0,4),(-1,7)]andC=[(1,0),(-1,4)]`
find `AC+B^(2)-10C`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \( AC + B^2 - 10C \) using the given matrices \( A \), \( B \), and \( C \). ### Step 1: Define the Matrices We have: \[ A = \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 4 \\ -1 & 7 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ -1 & 4 \end{pmatrix} \] ### Step 2: Calculate \( AC \) To find \( AC \), we multiply matrix \( A \) with matrix \( C \): \[ AC = A \cdot C = \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 1 + 3 \cdot (-1) = 2 - 3 = -1 \) - First row, second column: \( 2 \cdot 0 + 3 \cdot 4 = 0 + 12 = 12 \) - Second row, first column: \( 5 \cdot 1 + 7 \cdot (-1) = 5 - 7 = -2 \) - Second row, second column: \( 5 \cdot 0 + 7 \cdot 4 = 0 + 28 = 28 \) Thus, \[ AC = \begin{pmatrix} -1 & 12 \\ -2 & 28 \end{pmatrix} \] ### Step 3: Calculate \( B^2 \) Now, we find \( B^2 \) by multiplying \( B \) with itself: \[ B^2 = B \cdot B = \begin{pmatrix} 0 & 4 \\ -1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 4 \\ -1 & 7 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot 0 + 4 \cdot (-1) = 0 - 4 = -4 \) - First row, second column: \( 0 \cdot 4 + 4 \cdot 7 = 0 + 28 = 28 \) - Second row, first column: \( -1 \cdot 0 + 7 \cdot (-1) = 0 - 7 = -7 \) - Second row, second column: \( -1 \cdot 4 + 7 \cdot 7 = -4 + 49 = 45 \) Thus, \[ B^2 = \begin{pmatrix} -4 & 28 \\ -7 & 45 \end{pmatrix} \] ### Step 4: Calculate \( 10C \) Next, we calculate \( 10C \): \[ 10C = 10 \cdot \begin{pmatrix} 1 & 0 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ -10 & 40 \end{pmatrix} \] ### Step 5: Combine the Results Now we need to compute \( AC + B^2 - 10C \): \[ AC + B^2 - 10C = \begin{pmatrix} -1 & 12 \\ -2 & 28 \end{pmatrix} + \begin{pmatrix} -4 & 28 \\ -7 & 45 \end{pmatrix} - \begin{pmatrix} 10 & 0 \\ -10 & 40 \end{pmatrix} \] Calculating the sum: - First row, first column: \( -1 - 4 - 10 = -15 \) - First row, second column: \( 12 + 28 - 0 = 40 \) - Second row, first column: \( -2 - 7 + 10 = 1 \) - Second row, second column: \( 28 + 45 - 40 = 33 \) Thus, the final result is: \[ AC + B^2 - 10C = \begin{pmatrix} -15 & 40 \\ 1 & 33 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[(2 ,3,-5 ),(1, 2,-1)] and B=[(0, 5,1),(-2, 7, 3)] , find A+B and A-B

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .

If A=[(3, 0),(5, 1)] and B=[(-4,2),(1, 0)] Find A^(2)-2AB+B^(2)

If A=[(2, 3),( 5 ,7)] , B=[(-1 ,0, 2),( 3, 4, 1)] , C=[(-1, 2 ,3),( 2 ,1, 0)] , find A+B and B+C (ii) 2B+3A and 3C-4B .

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(,2,-1),(,3,4):}]=B=[{:(,5,2),(,7,4):}],C=[{:(,2,5),(,3,8):}] and AB-CD=0 find D.

ICSE-MATHEMATICS-2018-SECTION- B
  1. Use graph paper for this question (Take 2 cm = 1 unit along both X and...

    Text Solution

    |

  2. Using properties of proportion, solve for x. Given that x is positive ...

    Text Solution

    |

  3. If A=[(2,3),(5,7)], B=[(0,4),(-1,7)]andC=[(1,0),(-1,4)] find AC+B^(2...

    Text Solution

    |

  4. Prove that (1+"cot"theta-"cosec"theta)(1+"tan"theta+"sec"theta)=2

    Text Solution

    |

  5. Find the value of k for which the following equation has equal roots :...

    Text Solution

    |

  6. On a map drawn to a scale of 1:50,000, a rectangular plot of alnd ABCD...

    Text Solution

    |

  7. On a map drawn to a scale of 1:50,000, a rectangular plot of alnd ABCD...

    Text Solution

    |

  8. A (2, 5), B(-1, 2) and C (5, 8) are the vertices of a triangle ABC, 'M...

    Text Solution

    |

  9. Rs 7500 were divided equally among a certain number of children. Had t...

    Text Solution

    |

  10. If the mean of the following distribution is 24, find the value of 'a'...

    Text Solution

    |

  11. Using ruler and compass only, construct a DeltaABC such that BC = 5 cm...

    Text Solution

    |

  12. Priyanka has a recurring deposite account of Rs 1000 per month at 10% ...

    Text Solution

    |

  13. In DeltaPQR, MN is parallel to QR and (PM)/(MQ)=2/(3) (i) Find (MN)...

    Text Solution

    |

  14. In DeltaPQR, MN is parallel to QR and (PM)/(MQ)=2/(3) Prove that De...

    Text Solution

    |

  15. In DeltaPQR, MN is parallel to QR and (PM)/(MQ)=2/(3) (iii) Find, A...

    Text Solution

    |

  16. The following figure represents a solid consiting of right circular cy...

    Text Solution

    |

  17. Use remainder theorem to factorize the following polynomial : 2x^(3)...

    Text Solution

    |

  18. In the figure given below 'O' is the centre of the circle. If QR = OP ...

    Text Solution

    |

  19. The angle of elevation from a point pof the top of a tower QR, 50m hig...

    Text Solution

    |

  20. The 4th term of an A.P. is 22 and 15th term is 66. Find the first term...

    Text Solution

    |