Home
Class 12
MATHS
Evaluate: int e^(x) (tan x + log sec x) ...

Evaluate: `int e^(x) (tan x + log sec x) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int e^x (\tan x + \log \sec x) \, dx \), we can break it down into two separate integrals: \[ \int e^x \tan x \, dx + \int e^x \log \sec x \, dx \] ### Step 1: Evaluate \( \int e^x \tan x \, dx \) For the first integral, we can use integration by parts. Let: - \( u = \tan x \) ⇒ \( du = \sec^2 x \, dx \) - \( dv = e^x \, dx \) ⇒ \( v = e^x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we get: \[ \int e^x \tan x \, dx = e^x \tan x - \int e^x \sec^2 x \, dx \] ### Step 2: Evaluate \( \int e^x \sec^2 x \, dx \) Now, we need to evaluate \( \int e^x \sec^2 x \, dx \). Again, we can use integration by parts. Let: - \( u = \sec x \) ⇒ \( du = \sec x \tan x \, dx \) - \( dv = e^x \, dx \) ⇒ \( v = e^x \) Using the integration by parts formula again: \[ \int e^x \sec^2 x \, dx = e^x \sec x - \int e^x \sec x \tan x \, dx \] ### Step 3: Substitute Back Now, substituting back into our expression for \( \int e^x \tan x \, dx \): \[ \int e^x \tan x \, dx = e^x \tan x - \left( e^x \sec x - \int e^x \sec x \tan x \, dx \right) \] This simplifies to: \[ \int e^x \tan x \, dx = e^x \tan x - e^x \sec x + \int e^x \sec x \tan x \, dx \] ### Step 4: Combine Terms Notice that we have \( \int e^x \tan x \, dx \) on both sides of the equation. Let’s denote \( I = \int e^x \tan x \, dx \). Then we have: \[ I = e^x \tan x - e^x \sec x + I \] Subtract \( I \) from both sides: \[ 0 = e^x \tan x - e^x \sec x \] This leads to: \[ I = e^x \tan x - e^x \sec x + C \] ### Step 5: Evaluate \( \int e^x \log \sec x \, dx \) Now we evaluate the second integral \( \int e^x \log \sec x \, dx \). We can use integration by parts again: Let: - \( u = \log \sec x \) ⇒ \( du = \sec x \tan x \, dx \) - \( dv = e^x \, dx \) ⇒ \( v = e^x \) Using integration by parts: \[ \int e^x \log \sec x \, dx = e^x \log \sec x - \int e^x \sec x \tan x \, dx \] ### Step 6: Combine All Parts Now we can combine everything: \[ \int e^x (\tan x + \log \sec x) \, dx = \int e^x \tan x \, dx + \int e^x \log \sec x \, dx \] Substituting the results we found: \[ = \left( e^x \tan x - e^x \sec x + C_1 \right) + \left( e^x \log \sec x - \int e^x \sec x \tan x \, dx + C_2 \right) \] The integral \( \int e^x \sec x \tan x \, dx \) cancels out, leading to the final answer: \[ = e^x \tan x + e^x \log \sec x + C \] ### Final Answer: \[ \int e^x (\tan x + \log \sec x) \, dx = e^x \tan x + e^x \log \sec x + C \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

int (1 + tan x )/ (x + log sec x)dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

Evaluate: int e^(x) (1 + tan x + tan^(2)x)dx

2. int(tan x)/(log sec x)dx

Evaluate : int x^n log x dx.

evaluate int 2e^x + 6 x + ln 2 dx

Evaluate: int cos^(3)x. e^(log sin x)dx

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

Evaluate : int "("3e^(x) -(1)/(5x)+ " sec x tan x ) dx "

Evaluate : int _(1) ^(e) ( dx)/( x (1 + log x))