Home
Class 12
MATHS
Evaluate: int(1)^(2) (sqrt(x))/(sqrt(3-x...

Evaluate: `int_(1)^(2) (sqrt(x))/(sqrt(3-x) + sqrt(x)) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} \, dx \), we can use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral:** Let \( I = \int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} \, dx \). 2. **Use the Symmetry Property:** We can use the property of integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] Here, \( a = 1 \) and \( b = 2 \), so \( a + b = 3 \). Thus, we have: \[ I = \int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} \, dx \] 3. **Rewrite the Integral:** Now we can express this integral as: \[ I = \int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} \, dx \] 4. **Add the Two Integrals:** Now, we can add the two expressions for \( I \): \[ 2I = \int_{1}^{2} \left( \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} + \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} \right) dx \] 5. **Simplify the Expression:** Notice that: \[ \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} + \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} = 1 \] Therefore: \[ 2I = \int_{1}^{2} 1 \, dx \] 6. **Evaluate the Integral:** Now we can evaluate the integral: \[ 2I = \int_{1}^{2} 1 \, dx = [x]_{1}^{2} = 2 - 1 = 1 \] 7. **Solve for \( I \):** Thus, we have: \[ 2I = 1 \implies I = \frac{1}{2} \] ### Final Answer: The value of the integral is: \[ I = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

I=int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

Evaluate: int(sec^2sqrt(x))/(sqrt(x))dx

Evaluate int_(1)^(5)sqrt(x-2)sqrt(x-1)dx .

Evaluate: int(1)/((sqrt(2)+x))dx=

Solve int_1^2 (sqrt(x))/(sqrt(x)+sqrt(3-x))dx

Evaluate: int(1-x)\ sqrt(x)\ dx

Evaluate: int(sec^2sqrt(x))/(sqrt(x))\ dx

Evaluate: int((1+sqrt(x))^2)/(sqrt(x))dx

Evaluate int(x+1)/(sqrt(2x+3))dx