Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that:
`|{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |{:(,a,b,b+c),(,c,a,c+a),(,b,c,a+b):}|=(a+b+c) (a-c)^2

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Using the properties of determinants, prove that following |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|=(a+b+c)^3

Show that: |[a, a+b ,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]|=a^3 .

Using properties of determinants. Prove that |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]|=3(a+b+c)(a b+b c+c a)

Using properties of determinants. Prove that |[3a,-a+b,-a+c], [-b+a,3b,-b+c], [-c+a,-c+b,3c]|=3(a+b+c)(a b+b c+c a)

Using the property of determinants and without expanding, prove that: |-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

Using properties of determinant, find the value of x: |{:(x+a, a^(2), a^(3)), (x+b, b^(2), b^(3)), (x+c, c^(2), c^(3)):}|=0