Home
Class 12
MATHS
Prove by the method of vectors that in a...

Prove by the method of vectors that in a triangle `(a)/(sin A) = (b)/(sin B) = (c )/(sin C)`

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

In any triangle ABC b^(2)sin2C+c^(2)sin2B=

If A+B+C=π Prove that in triangle ABC, sin A+sin B+Cle(3sqrt(3))/(2)

In an Delta ABC as showin in Fig. 2 . (2) .71 (a) prove that a/(sin A) =b/(sin B) =C/(sin C) .

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

If a/(sinA)=K , then the area of "Triangle ABC" in terms of K and sines of the angles is (K^2)/4sin A sin B sin C (b) (K^2)/2sin A sin B sin C 2K^2sin A sin B "sin"(A+B) (d) none

For any triangle ABC, prove that (a-b)/c=(sin((A-B)/2))/(cos(C/2))

In any Delta ABC, sum a(sin B - sin C) =

In any triangle A B C , prove that following: \ (a^2"sin"(B-C))/(sin A)+(b^2"sin"(C-A))/(sin B)+(c^2"sin"(A-B))/(sin C)=0

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0