Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines :
`(x-8)/3 = (y+9)/(-16) = (z-10)/7`
and `(x-15)/3 = (y-29)/8 = (5-z)/5` a) 11units b) 14units c) 17unis d) 19units

A

11 units

B

14 units

C

17 units

D

19 units

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two lines given by their symmetric equations, we will follow these steps: ### Step 1: Identify the points and direction ratios of the lines The first line is given by: \[ \frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7} \] From this, we can identify: - A point on the first line \( A_1 = (8, -9, 10) \) - Direction ratios \( \mathbf{b_1} = (3, -16, 7) \) The second line is given by: \[ \frac{x-15}{3} = \frac{y-29}{8} = \frac{5-z}{5} \] From this, we can identify: - A point on the second line \( A_2 = (15, 29, 5) \) - Direction ratios \( \mathbf{b_2} = (3, 8, -5) \) ### Step 2: Find the vector between the two points Calculate the vector \( \mathbf{A_2 - A_1} \): \[ \mathbf{A_2 - A_1} = (15 - 8, 29 - (-9), 5 - 10) = (7, 38, -5) \] ### Step 3: Calculate the cross product of the direction vectors Now we compute the cross product \( \mathbf{b_2} \times \mathbf{b_1} \): \[ \mathbf{b_1} = (3, -16, 7), \quad \mathbf{b_2} = (3, 8, -5) \] Using the determinant formula for the cross product: \[ \mathbf{b_2} \times \mathbf{b_1} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 8 & -5 \\ 3 & -16 & 7 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \begin{vmatrix} 8 & -5 \\ -16 & 7 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 3 & -5 \\ 3 & 7 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 3 & 8 \\ 3 & -16 \end{vmatrix} \] Calculating the minors: \[ = \mathbf{i} (8 \cdot 7 - (-5) \cdot (-16)) - \mathbf{j} (3 \cdot 7 - (-5) \cdot 3) + \mathbf{k} (3 \cdot (-16) - 8 \cdot 3) \] \[ = \mathbf{i} (56 - 80) - \mathbf{j} (21 + 15) + \mathbf{k} (-48 - 24) \] \[ = \mathbf{i} (-24) - \mathbf{j} (36) + \mathbf{k} (-72) \] Thus, \[ \mathbf{b_2} \times \mathbf{b_1} = (-24, -36, -72) \] ### Step 4: Calculate the dot product Now we calculate the dot product \( (\mathbf{A_2 - A_1}) \cdot (\mathbf{b_2} \times \mathbf{b_1}) \): \[ (7, 38, -5) \cdot (-24, -36, -72) = 7 \cdot (-24) + 38 \cdot (-36) + (-5) \cdot (-72) \] Calculating this: \[ = -168 - 1368 + 360 = -1176 \] ### Step 5: Calculate the magnitude of the cross product Now, we find the magnitude of \( \mathbf{b_2} \times \mathbf{b_1} \): \[ \|\mathbf{b_2} \times \mathbf{b_1}\| = \sqrt{(-24)^2 + (-36)^2 + (-72)^2} = \sqrt{576 + 1296 + 5184} = \sqrt{7056} = 84 \] ### Step 6: Calculate the shortest distance Finally, we use the formula for the shortest distance \( d \): \[ d = \frac{|(\mathbf{A_2 - A_1}) \cdot (\mathbf{b_2} \times \mathbf{b_1})|}{\|\mathbf{b_2} \times \mathbf{b_1}\|} \] Substituting the values we found: \[ d = \frac{| -1176 |}{84} = \frac{1176}{84} = 14 \] Thus, the shortest distance between the two lines is **14 units**.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines (x-23)/(-6) = (y-19)/(-4) = (z-25)/(3) and (x-12)/(-9) = (y-1)/(4)= (z-5)/(2).

Find the shortest distance between the lines (x-1)/2=(y-2)/4=(z-3)/7 and (x-1)/4=(y-2)/5=(z-3)/7

Find the shortest distance between the lines (x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1

Find the shortest distance between the lines (x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1

The shortest distance between the lines (x-3)/(2) = (y +15)/(-7) = (z-9)/(5) and (x+1)/(2) = (y-1)/(1) = (z-9)/(-3) is :

The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1 and (x+3)/(-3)=(y+7)/2=(z-6)/4 is

Find the shortest distance between the lines (x)/2=(y-2)/3=(z-4)/3 and (x-1)/3=(y-2)/7=(z-3)/8

Find the shortest distance between the following lines: (x-3)/1=(y-5)/(-2)=(z-7)/1 and (x+1)/7=(y+1)/(-6)=(z+1)/1

Find the shortest distance between the following lines: (x-3)/1=(y-5)/(-2)=(z-7)/1 and (x+1)/7=(y+1)/(-6)=(z+1)/1

Find the shortest distance between the lines (x)/(5)= (y-2)/(2) =(3-z)/(-3) and (x+3)/(5)=(1-y)/(-2)=(z+4)/(3)