Home
Class 12
MATHS
Evaluate int(1)/(x+sqrt(x))dx...

Evaluate `int(1)/(x+sqrt(x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{x + \sqrt{x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{x + \sqrt{x}} \, dx \] We can factor out \( \sqrt{x} \) from the denominator: \[ = \int \frac{1}{\sqrt{x}(\sqrt{x} + 1)} \, dx \] ### Step 2: Substitute \( \sqrt{x} \) Let \( t = \sqrt{x} \). Then, \( x = t^2 \) and \( dx = 2t \, dt \). Substituting these into the integral gives: \[ = \int \frac{2t}{t^2 + t} \, dt \] ### Step 3: Simplify the Integral Now, we can simplify the expression: \[ = \int \frac{2t}{t(t + 1)} \, dt = \int \frac{2}{t + 1} \, dt \] ### Step 4: Integrate Now we can integrate: \[ = 2 \int \frac{1}{t + 1} \, dt = 2 \ln |t + 1| + C \] ### Step 5: Substitute Back Now, we substitute back \( t = \sqrt{x} \): \[ = 2 \ln |\sqrt{x} + 1| + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{1}{x + \sqrt{x}} \, dx = 2 \ln (\sqrt{x} + 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS - 2013

    ICSE|Exercise Section-B|6 Videos
  • MATHEMATICS - 2013

    ICSE|Exercise Section-C|6 Videos
  • LINEAR REGRESSION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x+1)/(sqrt(2x+3))dx

Evaluate: int1/(sqrt(x)+x)dx

Evaluate: int1/(1+sqrt(x))dx

Evaluate: int1/(x\ sqrt(1+x^n))\ dx

Evaluate: int1/(x\ sqrt(x^4-1))\ dx

Evaluate: int(x+1)/(sqrt(2x-1))\ dx

Evaluate: int1/((x+1)sqrt(x))\ dx

Evaluate: int((1+x)^2)/(sqrt(x))\ dx

Evaluate: int1/((x-1)sqrt(x+1))\ dx

Evaluate: int1/((x-1)sqrt(x+2))\ dx