Home
Class 12
MATHS
Find A^(-1), where A=[{:(4,2,3),(1,1,1),...

Find `A^(-1)`, where `A=[{:(4,2,3),(1,1,1),(3,1,-2):}]` Hence, solve the following system equations
`{:(4x+2y+3z=2),(x+y+z=1),(3x+y-2z=5):}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) and solve the system of equations, we will follow these steps: ### Step 1: Write the Matrix \( A \) The given matrix \( A \) is: \[ A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A \) We will calculate the determinant \( \text{det}(A) \) using the formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). For our matrix: - \( a = 4, b = 2, c = 3 \) - \( d = 1, e = 1, f = 1 \) - \( g = 3, h = 1, i = -2 \) Calculating the determinant: \[ \text{det}(A) = 4(1 \cdot (-2) - 1 \cdot 1) - 2(1 \cdot (-2) - 1 \cdot 3) + 3(1 \cdot 1 - 1 \cdot 3) \] \[ = 4(-2 - 1) - 2(-2 - 3) + 3(1 - 3) \] \[ = 4(-3) - 2(-5) + 3(-2) \] \[ = -12 + 10 - 6 = -8 \] ### Step 3: Find the Adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix. We will calculate each cofactor. 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} = (1)(-2) - (1)(1) = -2 - 1 = -3 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{pmatrix} 1 & 1 \\ 3 & -2 \end{pmatrix} = -((1)(-2) - (1)(3)) = -(-2 - 3) = 5 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix} = (1)(1) - (1)(3) = 1 - 3 = -2 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} = -((2)(-2) - (3)(1)) = -(-4 - 3) = 7 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{pmatrix} 4 & 3 \\ 3 & -2 \end{pmatrix} = (4)(-2) - (3)(3) = -8 - 9 = -17 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} = -((4)(1) - (2)(3)) = -(4 - 6) = 2 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = (2)(1) - (3)(1) = 2 - 3 = -1 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix} = -((4)(1) - (3)(1)) = -(4 - 3) = -1 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} = (4)(1) - (2)(1) = 4 - 2 = 2 \] Now, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} -3 & 5 & -2 \\ 7 & -17 & 2 \\ -1 & -1 & 2 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -3 & 7 & -1 \\ 5 & -17 & -1 \\ -2 & 2 & 2 \end{pmatrix} \] ### Step 4: Calculate the Inverse of \( A \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-8} \begin{pmatrix} -3 & 7 & -1 \\ 5 & -17 & -1 \\ -2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} \frac{3}{8} & -\frac{7}{8} & \frac{1}{8} \\ -\frac{5}{8} & \frac{17}{8} & \frac{1}{8} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \end{pmatrix} \] ### Step 5: Solve the System of Equations The system of equations can be written in matrix form \( AX = B \): \[ X = A^{-1}B \] where \( B = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} \). Calculating \( X \): \[ X = \begin{pmatrix} \frac{3}{8} & -\frac{7}{8} & \frac{1}{8} \\ -\frac{5}{8} & \frac{17}{8} & \frac{1}{8} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} \] Calculating each component: 1. \( x = \frac{3}{8}(2) - \frac{7}{8}(1) + \frac{1}{8}(5) = \frac{6}{8} - \frac{7}{8} + \frac{5}{8} = \frac{4}{8} = \frac{1}{2} \) 2. \( y = -\frac{5}{8}(2) + \frac{17}{8}(1) + \frac{1}{8}(5) = -\frac{10}{8} + \frac{17}{8} + \frac{5}{8} = \frac{12}{8} = \frac{3}{2} \) 3. \( z = \frac{1}{4}(2) - \frac{1}{4}(1) - \frac{1}{4}(5) = \frac{2}{4} - \frac{1}{4} - \frac{5}{4} = -\frac{4}{4} = -1 \) Thus, the solution to the system of equations is: \[ x = \frac{1}{2}, \quad y = \frac{3}{2}, \quad z = -1 \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS - 2013

    ICSE|Exercise Section-B|6 Videos
  • MATHEMATICS - 2013

    ICSE|Exercise Section-C|6 Videos
  • LINEAR REGRESSION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos

Similar Questions

Explore conceptually related problems

Using matrices solve the following system of linear equations: {(2x+3y+10z=4),(4x-6y+5z=1),(6x+9y-20z=2):}.

Using matrices, solve the following system of equations: 2x+3y+3z=5; x - 2y+z=- 4; 3x- y-2z=3

Solve the following system of equations by matrix method. 3x-2y + 3z= 8 2x + y-z = 1 4x-3y + 2z = 4

Using matrices, solve the following system of equations: 2x-y+z= -3 , 3x-z= -8 , x+3y=1

Solve the following system of equations by matrix method : x+y-2z=3 , 2x+3y+z=10 and 3x-y-7z=1

Using matrices, solve the following system of equations: 2x-3y+5z=11 , 3x+2y-4z=-5 , x+y-2z=-3

Using matrices solve the following system of equations : 2x-3y+5z=11 3x+2y-4z=-5 x+y-2z=-3

Solve the following system of equations: x-y+z=4,\ \ \ \ x-2y-2z=9,\ \ \ \ 2x+y+3z=1

Find A^(-1) , if A=[1 2 5 1-1-1 2 3-1] . Hence, solve the following system of linear equations: x+2y+5z=10 ,\ \ x-y-z=-2,\ \ 2x+3y-z=-11

Using the matrix method, solve the following system of equations. x-2y+3z=6, x+4y+z=12,x-3y+2z=1