Home
Class 12
MATHS
Evaluate : tan[2tan^(-1)(1/2)-cot^(-1)3...

Evaluate : `tan[2tan^(-1)(1/2)-cot^(-1)3]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan\left[2\tan^{-1}\left(\frac{1}{2}\right) - \cot^{-1}(3)\right] \), we can follow these steps: ### Step 1: Use the double angle formula for tangent We know that: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Let \( x = \frac{1}{2} \). Then: \[ 2\tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2}\right) = \tan^{-1}\left(\frac{1}{1 - \frac{1}{4}}\right) = \tan^{-1}\left(\frac{1}{\frac{3}{4}}\right) = \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 2: Rewrite the expression Now substitute back into the original expression: \[ \tan\left[2\tan^{-1}\left(\frac{1}{2}\right) - \cot^{-1}(3)\right] = \tan\left[\tan^{-1}\left(\frac{4}{3}\right) - \cot^{-1}(3)\right] \] ### Step 3: Use the identity for tangent of a difference Using the identity: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Let \( A = \tan^{-1}\left(\frac{4}{3}\right) \) and \( B = \cot^{-1}(3) \). We know that: \[ \tan B = \cot^{-1}(3) \implies \tan B = \frac{1}{3} \] Now we can apply the identity: \[ \tan\left[\tan^{-1}\left(\frac{4}{3}\right) - \cot^{-1}(3)\right] = \frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{3} \cdot \frac{1}{3}} = \frac{\frac{4 - 1}{3}}{1 + \frac{4}{9}} = \frac{\frac{3}{3}}{\frac{13}{9}} = \frac{1}{\frac{13}{9}} = \frac{9}{13} \] ### Step 4: Final result Thus, the final result is: \[ \tan\left[2\tan^{-1}\left(\frac{1}{2}\right) - \cot^{-1}(3)\right] = \frac{9}{13} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate: tan(2tan^(-1)(1/5))

Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)

Evaluate tan^(-1).(1)/(2)+ tan^(-1).(1)/(3) .

Evaluate: (i) tan{2tan^(-1)(1/5)-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5)/3)}

Evaluate: (i) cot(tan^(-1)a+cot^(-1)a)

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))

Evaluate cot (tan ^(-1) 3) .

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Find the value of tan(sin^(-1)3/5+cot^(-1)3/2)