Home
Class 12
MATHS
Evaluate : inte^(x).((2+sin2x))/(cos^(2)...

Evaluate : `inte^(x).((2+sin2x))/(cos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int e^x \frac{2 + \sin 2x}{\cos^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral for clarity: \[ I = \int e^x \frac{2 + \sin 2x}{\cos^2 x} \, dx \] ### Step 2: Simplify \(\sin 2x\) Recall the double angle identity for sine: \[ \sin 2x = 2 \sin x \cos x \] Substituting this into the integral gives: \[ I = \int e^x \frac{2 + 2 \sin x \cos x}{\cos^2 x} \, dx \] ### Step 3: Factor out the constant We can factor out the 2 from the numerator: \[ I = \int e^x \left( \frac{2}{\cos^2 x} + \frac{2 \sin x \cos x}{\cos^2 x} \right) \, dx \] This simplifies to: \[ I = 2 \int e^x \left( \sec^2 x + \tan x \right) \, dx \] ### Step 4: Split the integral Now we can split the integral into two parts: \[ I = 2 \left( \int e^x \sec^2 x \, dx + \int e^x \tan x \, dx \right) \] ### Step 5: Use integration by parts For the integral \( \int e^x \tan x \, dx \), we can use integration by parts. Let: - \( u = \tan x \) ⇒ \( du = \sec^2 x \, dx \) - \( dv = e^x \, dx \) ⇒ \( v = e^x \) Using integration by parts: \[ \int e^x \tan x \, dx = e^x \tan x - \int e^x \sec^2 x \, dx \] ### Step 6: Substitute back into the integral Now substituting back into our expression for \( I \): \[ I = 2 \left( \int e^x \sec^2 x \, dx + e^x \tan x - \int e^x \sec^2 x \, dx \right) \] The \( \int e^x \sec^2 x \, dx \) terms cancel out: \[ I = 2 e^x \tan x + C \] ### Final Result Thus, the evaluated integral is: \[ I = 2 e^x \tan x + C \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

int(sin2x)/(cos2x)dx

Evaluate: int e^(x)((sin2x-2)/(1-cos2x))dx=

Evaluate : inte^xdot(2+sin2x)/(2cos^2x)\ dx

Evaluate: inte^(2x)\ ((1+sin2x)/(1+cos2x))\ dx

Evaluate int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx

int(1+sin2x)/(cos^2x)dx

Evaluate: inte^x\ ((2+sin2x)/(1+cos2x))\ dx

Evaluate : int(dx)/(sinx+sin2x)