Home
Class 12
MATHS
Using properties of definite integrals, ...

Using properties of definite integrals, evaluate
`int_(0)^(pi//2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx, \] we will use properties of definite integrals. ### Step 1: Define the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx. \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}} \, dx. \] ### Step 3: Simplify using trigonometric identities Using the trigonometric identities, we know that: \[ \sin\left(\frac{\pi}{2} - x\right) = \cos x \quad \text{and} \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x. \] Substituting these into the integral gives us: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx. \] ### Step 4: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right) \, dx. \] ### Step 5: Simplify the expression The denominators are the same, so we can combine the fractions: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 6: Evaluate the integral Now we evaluate the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] Thus, the value of the integral is \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int0pi/2(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx

Evaluate : int_0^(pi/2)sqrt(1+sinx)dx

Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

By using the properties of definite integrals, evaluate the integrals int_0^p(sqrt(x))/(sqrt(x)+sqrt(p-x))dx

By using the properties of definite integrals, evaluate the integrals int_0^a(sqrt(x))/(sqrt(x)+sqrt(a-x))dx

By using the properties of definite integrals, evaluate the integrals int_0^a(sqrt(x))/(sqrt(x)+sqrt(a-x))dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

int(sinx)/(sqrt(1+sinx))dx