Home
Class 12
MATHS
Using matrix method, solve the following...

Using matrix method, solve the following system of equation
`x-2y=10,2x+y+3z=8` and `-2y+z=7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations using the matrix method, we will follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \( x - 2y = 10 \) 2. \( 2x + y + 3z = 8 \) 3. \( -2y + z = 7 \) We can express this in the matrix form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the variable matrix, - \( B \) is the constant matrix. Thus, we have: \[ A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \( A \) To find the determinant of \( A \): \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & 1 \\ 0 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} = (1)(1) - (3)(-2) = 1 + 6 = 7 \] \[ \begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} = (2)(1) - (3)(0) = 2 \] Thus, \[ \text{det}(A) = 1 \cdot 7 + 2 \cdot 2 = 7 + 4 = 11 \] ### Step 3: Find the inverse of matrix \( A \) Since \( \text{det}(A) \neq 0 \), the inverse of \( A \) exists. The inverse can be found using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] To find \( \text{adj}(A) \), we need to find the cofactor matrix and then transpose it. #### Step 3.1: Find the cofactor matrix The cofactor matrix is calculated by finding the determinants of the minors: - \( C_{11} = \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} = 7 \) - \( C_{12} = -\begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} = -2 \) - \( C_{13} = \begin{vmatrix} 2 & 1 \\ 0 & -2 \end{vmatrix} = 4 \) Continuing this process for all elements, we find: \[ \text{cofactor matrix} = \begin{pmatrix} 7 & -2 & 4 \\ 2 & 1 & 2 \\ -6 & -3 & 5 \end{pmatrix} \] #### Step 3.2: Transpose the cofactor matrix Now, we transpose the cofactor matrix to find the adjoint: \[ \text{adj}(A) = \begin{pmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ 4 & 2 & 5 \end{pmatrix} \] #### Step 3.3: Calculate \( A^{-1} \) Now we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{11} \cdot \begin{pmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ 4 & 2 & 5 \end{pmatrix} \] ### Step 4: Solve for \( X \) Using the equation \( AX = B \), we can solve for \( X \): \[ X = A^{-1}B \] Calculating \( A^{-1}B \): \[ X = \frac{1}{11} \begin{pmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ 4 & 2 & 5 \end{pmatrix} \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} \] Calculating the product: \[ = \frac{1}{11} \begin{pmatrix} (7 \cdot 10) + (2 \cdot 8) + (-6 \cdot 7) \\ (-2 \cdot 10) + (1 \cdot 8) + (-3 \cdot 7) \\ (4 \cdot 10) + (2 \cdot 8) + (5 \cdot 7) \end{pmatrix} \] \[ = \frac{1}{11} \begin{pmatrix} 70 + 16 - 42 \\ -20 + 8 - 21 \\ 40 + 16 + 35 \end{pmatrix} \] \[ = \frac{1}{11} \begin{pmatrix} 44 \\ -33 \\ 91 \end{pmatrix} \] Thus, \[ X = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} \] ### Final Solution The solution to the system of equations is: \[ x = 4, \quad y = -3, \quad z = 1 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Using matrix method, solve the following system of linear equations. 3x+4y+2z=8, 2y-3z=3 and x-2y+6z=-2

Use matrix method to solve the following system of equations: x-2y-4=0,\ \ -3x+5y+7=0

Using the matrix method, solve the following system of equations. x-2y+3z=6, x+4y+z=12,x-3y+2z=1

Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=6 and 2x-y+z=2

Using matrices, solve the following system of equations: 2x-y+z= -3 , 3x-z= -8 , x+3y=1

Using matrix method, solve the following system of equations: 2/x+3/y+(10)/z=4,4/x-6/y+5/z=1,6/x+9/y-(20)/z=2; x ,\ y ,\ z\ !=0

Solve the following system of linear equations using matrices : x-2y=10,2x-y-z=8,-2y+z=7

Using matrices, solve the following system of equations: x+y+z=6 ; x+2z=7 ; 3x+y+z=12

Using matrices, solve the following system of equations: 2x-3y+5z=11 , 3x+2y-4z=-5 , x+y-2z=-3

Using matrix method, solve the system of equations: {:( x+2y+z=1 ),( x-y -z=2 ),( 2x+3y+z=1):}