Home
Class 12
MATHS
Evaluate int(x+sinx)/(1+cosx)dx...

Evaluate `int(x+sinx)/(1+cosx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{x + \sin x}{1 + \cos x} \, dx\), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We can separate the integral into two parts: \[ \int \frac{x + \sin x}{1 + \cos x} \, dx = \int \frac{x}{1 + \cos x} \, dx + \int \frac{\sin x}{1 + \cos x} \, dx \] ### Step 2: Simplify the Second Integral For the second integral \(\int \frac{\sin x}{1 + \cos x} \, dx\), we can use the substitution: Let \(u = 1 + \cos x\), then \(du = -\sin x \, dx\) or \(-du = \sin x \, dx\). The limits change accordingly, but since we are dealing with an indefinite integral, we can ignore the limits. Thus, we have: \[ \int \frac{\sin x}{1 + \cos x} \, dx = -\int \frac{1}{u} \, du = -\ln |u| + C = -\ln |1 + \cos x| + C \] ### Step 3: Evaluate the First Integral Now we focus on the first integral \(\int \frac{x}{1 + \cos x} \, dx\). This integral can be approached using integration by parts: Let: - \(u = x\) \(\Rightarrow du = dx\) - \(dv = \frac{1}{1 + \cos x} \, dx\) To find \(v\), we need to evaluate \(\int \frac{1}{1 + \cos x} \, dx\). We can rewrite \(1 + \cos x\) using the identity: \[ 1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \] Thus, \[ \int \frac{1}{1 + \cos x} \, dx = \int \frac{1}{2 \cos^2 \left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \sec^2 \left(\frac{x}{2}\right) \, dx \] The integral of \(\sec^2\) is: \[ \frac{1}{2} \cdot 2 \tan \left(\frac{x}{2}\right) = \tan \left(\frac{x}{2}\right) \] So, \(v = \tan \left(\frac{x}{2}\right)\). ### Step 4: Apply Integration by Parts Now, applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int \frac{x}{1 + \cos x} \, dx = x \tan \left(\frac{x}{2}\right) - \int \tan \left(\frac{x}{2}\right) \, dx \] ### Step 5: Evaluate \(\int \tan \left(\frac{x}{2}\right) \, dx\) To evaluate \(\int \tan \left(\frac{x}{2}\right) \, dx\), we can use the identity: \[ \tan \left(\frac{x}{2}\right) = \frac{\sin \left(\frac{x}{2}\right)}{\cos \left(\frac{x}{2}\right)} \] The integral can be solved using a substitution or known integral formulas. ### Step 6: Combine Results Putting everything together, we have: \[ \int \frac{x + \sin x}{1 + \cos x} \, dx = x \tan \left(\frac{x}{2}\right) - \int \tan \left(\frac{x}{2}\right) \, dx - \ln |1 + \cos x| + C \] ### Final Result The final result is: \[ \int \frac{x + \sin x}{1 + \cos x} \, dx = x \tan \left(\frac{x}{2}\right) - \ln |1 + \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate: int(1-sinx)/(x+cosx)dx

Evaluate: int(sinx)/(sinx-cosx)dx

Evaluate: int( 2sinx + 3cosx) dx

Evaluate : int(sinx)/((1-cosx)\ (2-cosx)\ dx

Evaluate: inte^x((1-sinx)/(1-cosx))dx

Evaluate : int {(1+sinx)/(x-cosx)}dx .

Evaluate: int(sinx)^(cosx)[cosxcotx-log(sinx)^(sinx)]dx

Evaluate: int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

Evaluate: int1/(sinx(3+2cosx)\ dx