Home
Class 12
MATHS
Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/...

Solve : `cos^(-1) (sin cos^(-1)x ) =(pi)/(6)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1}(\sin(\cos^{-1} x)) = \frac{\pi}{6} \), we will follow these steps: ### Step 1: Use the property of inverse trigonometric functions We know that: \[ \cos^{-1} y + \sin^{-1} y = \frac{\pi}{2} \] Thus, we can rewrite \( \cos^{-1} x \) as: \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Substituting this into our equation gives: \[ \cos^{-1}(\sin(\frac{\pi}{2} - \sin^{-1} x)) = \frac{\pi}{6} \] ### Step 2: Simplify using the sine and cosine relationship Using the identity \( \sin(\frac{\pi}{2} - \theta) = \cos(\theta) \), we have: \[ \sin(\frac{\pi}{2} - \sin^{-1} x) = \cos(\sin^{-1} x) \] Thus, our equation becomes: \[ \cos^{-1}(\cos(\sin^{-1} x)) = \frac{\pi}{6} \] ### Step 3: Cancel the inverse cosine and cosine Since \( \cos^{-1}(\cos y) = y \) for \( y \) in the range \( [0, \pi] \), we can simplify to: \[ \sin^{-1} x = \frac{\pi}{6} \] ### Step 4: Solve for \( x \) Taking the sine of both sides gives: \[ x = \sin\left(\frac{\pi}{6}\right) \] We know that: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Thus, we find: \[ x = \frac{1}{2} \] ### Final Answer The solution to the equation is: \[ x = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve 2 cos^(-1) x + sin^(-1) x = (2pi)/(3)

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

Solve: sin^(-1)x=pi/6+cos^(-1)x

Solve: cos^(- 1)xsqrt(3)+cos^(- 1)x=pi/2

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is : (a) "cos"(pi)/(5) (b) "cos"(pi)/(4) (c) "cos"(pi)/(8) (d) "cos"(pi)/(12)

Solve sin (cos ^(-1) x) = (1)/(9)

solve sin^(-1) x le cos^(-1) x