Home
Class 12
MATHS
Evaluate : int(0)^(3) f(x) dx, where ...

Evaluate : `int_(0)^(3) f(x) dx`,
where `f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{3} f(x) \, dx \) where \[ f(x) = \begin{cases} \cos(2x) & \text{for } 0 \leq x \leq \frac{\pi}{2} \\ 3 & \text{for } \frac{\pi}{2} < x \leq 3 \end{cases} \] we can break the integral into two parts based on the definition of \( f(x) \): 1. From \( 0 \) to \( \frac{\pi}{2} \) 2. From \( \frac{\pi}{2} \) to \( 3 \) Thus, we can write: \[ \int_{0}^{3} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} f(x) \, dx + \int_{\frac{\pi}{2}}^{3} f(x) \, dx \] ### Step 1: Evaluate the first integral For the first integral, we have: \[ \int_{0}^{\frac{\pi}{2}} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx \] To solve this integral, we can use the substitution: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) + C \] Now we evaluate the definite integral: \[ \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx = \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \sin(\pi) - \frac{1}{2} \sin(0) = \frac{1}{2} \cdot 0 - \frac{1}{2} \cdot 0 = 0 \] ### Step 2: Evaluate the second integral For the second integral, we have: \[ \int_{\frac{\pi}{2}}^{3} f(x) \, dx = \int_{\frac{\pi}{2}}^{3} 3 \, dx \] This integral can be computed as follows: \[ \int_{\frac{\pi}{2}}^{3} 3 \, dx = 3 \left[ x \right]_{\frac{\pi}{2}}^{3} = 3 \left( 3 - \frac{\pi}{2} \right) = 9 - \frac{3\pi}{2} \] ### Step 3: Combine the results Now we combine the results from both integrals: \[ \int_{0}^{3} f(x) \, dx = 0 + \left( 9 - \frac{3\pi}{2} \right) = 9 - \frac{3\pi}{2} \] Thus, the final answer is: \[ \int_{0}^{3} f(x) \, dx = 9 - \frac{3\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}