Home
Class 12
MATHS
If 1, omega and omega^(2) are the cube r...

If 1, `omega and omega^(2)` are the cube roots of unity, prove that `(a+b omega+c omega^(2))/(c+a omega+b omega^(2))=omega^(2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega - omega^(2)) (1- omega + omega^(2))=4

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega- omega^(2))^(6)= 64

If omega and omega^(2) are cube roots of unity, prove that (2- omega + 2omega^(2)) (2 + 2omega- omega^(2))= 9

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega^(2))^(4)= omega

If 1, omega, omega^(2) are the cube roots of unity, prove that (1 + omega)^(3)-(1 + omega^(2))^(3)=0

If 1, omega, omega^(2) are three cube roots of unity, prove that (1+ omega- omega^(2))^(3)= (1- omega + omega^(2))^(3)= -8

If, 1, omega, omega^(2) are cube roots of unity, show that (p + qomega + r omega^(2))/(r + p omega + q omega^(2))= omega^(2)

If 1, omega, omega^(2) are three cube roots of unity, prove that omega^(28) + omega^(29) + 1= 0

If 1, omega, omega^(2) are three cube roots of unity, prove that (3+ 5omega + 3omega^(2))^(6) = (3 + 5omega^(2) + 3omega)^(6)= 64