Home
Class 12
MATHS
Solve the equation for x : "sin"^(-1)...

Solve the equation for x :
`"sin"^(-1)(5)/(x)+"sin"^(-1)(12)/(x)=(pi)/(2), x ne 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2}, \quad x \neq 0, \] we can follow these steps: ### Step 1: Set up the equation Let \[ \beta = \sin^{-1}\left(\frac{12}{x}\right). \] Then, we can express the first term as: \[ \sin^{-1}\left(\frac{5}{x}\right) + \beta = \frac{\pi}{2}. \] ### Step 2: Rearranging the equation From the equation, we can rearrange it to find: \[ \sin^{-1}\left(\frac{5}{x}\right) = \frac{\pi}{2} - \beta. \] ### Step 3: Use the sine of complementary angles Using the identity \(\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)\), we have: \[ \frac{5}{x} = \cos(\beta). \] ### Step 4: Express \(\cos(\beta)\) Since \(\beta = \sin^{-1}\left(\frac{12}{x}\right)\), we can find \(\cos(\beta)\) using the Pythagorean identity: \[ \cos(\beta) = \sqrt{1 - \sin^2(\beta)} = \sqrt{1 - \left(\frac{12}{x}\right)^2} = \sqrt{1 - \frac{144}{x^2}}. \] ### Step 5: Substitute \(\cos(\beta)\) back Substituting back into the equation gives: \[ \frac{5}{x} = \sqrt{1 - \frac{144}{x^2}}. \] ### Step 6: Square both sides Squaring both sides to eliminate the square root yields: \[ \left(\frac{5}{x}\right)^2 = 1 - \frac{144}{x^2}. \] This simplifies to: \[ \frac{25}{x^2} = 1 - \frac{144}{x^2}. \] ### Step 7: Combine terms Multiplying through by \(x^2\) to eliminate the denominators gives: \[ 25 = x^2 - 144. \] ### Step 8: Rearranging the equation Rearranging this gives: \[ x^2 = 25 + 144 = 169. \] ### Step 9: Solve for \(x\) Taking the square root of both sides yields: \[ x = \pm 13. \] ### Step 10: Consider the restriction Since \(x \neq 0\), both \(x = 13\) and \(x = -13\) are valid solutions. Thus, the final solutions are: \[ x = 13 \quad \text{and} \quad x = -13. \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve the equation : cot x=2 , sin2x=1

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation for x: sin^(-1) x+sin^(-1) (1-x)=cos^(-1) x, x ne 0

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve the equation for 0 le x le 2pi. 2 sin x-1 =0

Solve the following equations : sin^(-1)(x^(2)-2x+3)+cos^(-1)(x^(2)-x)=(pi)/2

Solve the equation sin^2x-cos^2x=(1)/(2)

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)