Home
Class 12
MATHS
If y=e^("mcos"^(-1)x), prove that: (1-...

If `y=e^("mcos"^(-1)x)`, prove that:
`(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y`

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If y=e^(m"sin"^(-1)x) , prove that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/(dx)=m^(2)y

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .

If logy=tan^(-1)x , prove that : (1+x^(2)) (d^(2)y)/(dx^(2))+(2x-1)(dy)/(dx)=0

If y=e^(msin^(-1)x) prove that (1-x^2)((d^2y)/dx^2)-x(dy)/dx=m^2y

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

If y=e^(acos^(-1)x),-1lt=x<1 , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0

If y=e^(acos^(-1)x),-1lt=x<1,s how t h a t (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0

If y=e^(acos^(-1)x), -1lt=xlt=1, show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0 .

If y=e^(acos^(-1)x) , -1lt=xlt=1 , show that (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0 .