Home
Class 12
MATHS
Given that the observations are: (9, -...

Given that the observations are:
(9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8).
Find the two lines of regression and estimate the value of y when x = 13.5.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the two lines of regression and estimating the value of \( y \) when \( x = 13.5 \), we will follow these steps: ### Step 1: Create a Table of Values We start by organizing the given data into a table that includes \( x \), \( y \), \( x^2 \), \( y^2 \), and \( xy \). | \( x \) | \( y \) | \( x^2 \) | \( y^2 \) | \( xy \) | |---------|---------|-----------|-----------|----------| | 9 | -4 | 81 | 16 | -36 | | 10 | -3 | 100 | 9 | -30 | | 11 | -1 | 121 | 1 | -11 | | 12 | 0 | 144 | 0 | 0 | | 13 | 1 | 169 | 1 | 13 | | 14 | 3 | 196 | 9 | 42 | | 15 | 5 | 225 | 25 | 75 | | 16 | 8 | 256 | 64 | 128 | | **Total** | | **1092** | **125** | **181** | ### Step 2: Calculate \( n \), \( \Sigma x \), \( \Sigma y \), \( \Sigma x^2 \), \( \Sigma y^2 \), and \( \Sigma xy \) - \( n = 8 \) (number of observations) - \( \Sigma x = 100 \) - \( \Sigma y = 9 \) - \( \Sigma x^2 = 1092 \) - \( \Sigma y^2 = 125 \) - \( \Sigma xy = 181 \) ### Step 3: Calculate the Means - \( \bar{x} = \frac{\Sigma x}{n} = \frac{100}{8} = 12.5 \) - \( \bar{y} = \frac{\Sigma y}{n} = \frac{9}{8} = 1.125 \) ### Step 4: Calculate the Regression Coefficients 1. **For the regression line of \( y \) on \( x \)**: \[ b_{yx} = \frac{n \Sigma xy - \Sigma x \Sigma y}{n \Sigma x^2 - (\Sigma x)^2} \] Substituting the values: \[ b_{yx} = \frac{8 \cdot 181 - 100 \cdot 9}{8 \cdot 1092 - 100^2} = \frac{1448 - 900}{8736 - 10000} = \frac{548}{336} \approx 1.631 \] 2. **For the regression line of \( x \) on \( y \)**: \[ b_{xy} = \frac{n \Sigma xy - \Sigma x \Sigma y}{n \Sigma y^2 - (\Sigma y)^2} \] Substituting the values: \[ b_{xy} = \frac{8 \cdot 181 - 100 \cdot 9}{8 \cdot 125 - 9^2} = \frac{1448 - 900}{1000 - 81} = \frac{548}{919} \approx 0.596 \] ### Step 5: Write the Regression Equations 1. **Equation of \( y \) on \( x \)**: \[ y - \bar{y} = b_{yx}(x - \bar{x}) \] Substituting the values: \[ y - 1.125 = 1.631(x - 12.5) \] Rearranging gives: \[ y = 1.631x - 19.6263 \] 2. **Equation of \( x \) on \( y \)**: \[ x - \bar{x} = b_{xy}(y - \bar{y}) \] Substituting the values: \[ x - 12.5 = 0.596(y - 1.125) \] Rearranging gives: \[ x = 0.596y + 11.830 \] ### Step 6: Estimate \( y \) when \( x = 13.5 \) Using the regression equation of \( y \) on \( x \): \[ y = 1.631(13.5) - 19.6263 \] Calculating: \[ y = 22.0365 - 19.6263 = 2.4102 \] ### Final Result Thus, the estimated value of \( y \) when \( x = 13.5 \) is approximately \( 2.4102 \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the equation of the regression line of y on x, if the observation (x,y) are as follows : (1, 4), (2, 8), (3, 2), (4, 12), (5, 10), (6, 14), (7, 16), (8, 6), (9, 18) Also, find the estimated value of y when x = 14.

The following observations are given : (1,4), (2, 8), (3, 2), (4,12), (5,10), (6,14), (7,16), (8,6), (9,18). Estimate the value ofy when the value of x is 10 and also estimate the value ofx when the value of y = 5

If the line of regression on x on y is 40x - 18y = 214 , then estimate the value of x when y=3

If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.

If the regression equation of y x is given by x+ y =8 , then estimate the value of y when x is 3.5 .

If the two lines of regression are 4x-5y+33=0and20x-9y-107=0 , find the variance of y when sigma_(x)=3 .

. Find the median of the given data: 9, 7, 12, 16, 8, 11, 16, 13, 10

Calculate the covariance of observation (3,5), (6,7),(9,9), (12,11), (15,13), (18,15), (21,17), (24, 19) using assumed mean A = 13 and B = 12.

If [(2,-1),(1,0),(-3,4)]A=[(-1,-8,-10),(1,-2,-5),(9,22,15)] , find A.

The marks of 19 students in a test were as follows: 5, 6, 8, 9, 10, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 19, 20. Calculate the median and mode.