Home
Class 12
MATHS
Find the shortest distance vecr=hati+2ha...

Find the shortest distance `vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and
vecr=
4hati+5hatj+6hatk+mu(2hati+3hatj+hatk)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines represented in vector form, we can follow these steps: ### Step 1: Identify the lines The two lines are given as: 1. \(\vec{r_1} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})\) 2. \(\vec{r_2} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu(2\hat{i} + 3\hat{j} + \hat{k})\) From these, we can identify: - For line 1: - \(\vec{a_1} = \hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{b_1} = \hat{i} - 3\hat{j} + 2\hat{k}\) - For line 2: - \(\vec{a_2} = 4\hat{i} + 5\hat{j} + 6\hat{k}\) - \(\vec{b_2} = 2\hat{i} + 3\hat{j} + \hat{k}\) ### Step 2: Find \(\vec{a_2} - \vec{a_1}\) Calculate the vector difference: \[ \vec{a_2} - \vec{a_1} = (4\hat{i} + 5\hat{j} + 6\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = (4 - 1)\hat{i} + (5 - 2)\hat{j} + (6 - 3)\hat{k} = 3\hat{i} + 3\hat{j} + 3\hat{k} \] ### Step 3: Compute \(\vec{b_1} \times \vec{b_2}\) Calculate the cross product \(\vec{b_1} \times \vec{b_2}\): \[ \vec{b_1} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \quad \vec{b_2} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \] Using the determinant method: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-3)(1) - (2)(3)) - \hat{j}((1)(1) - (2)(2)) + \hat{k}((1)(3) - (-3)(2)) \] \[ = \hat{i}(-3 - 6) - \hat{j}(1 - 4) + \hat{k}(3 + 6) \] \[ = -9\hat{i} + 3\hat{j} + 9\hat{k} \] ### Step 4: Find the magnitude of \(\vec{b_1} \times \vec{b_2}\) Calculate the magnitude: \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-9)^2 + 3^2 + 9^2} = \sqrt{81 + 9 + 81} = \sqrt{171} = 3\sqrt{19} \] ### Step 5: Calculate the shortest distance Using the formula for the shortest distance \(d\) between two lines: \[ d = \frac{|\vec{b_1} \times \vec{b_2} \cdot (\vec{a_2} - \vec{a_1})|}{|\vec{b_1} \times \vec{b_2}|} \] Calculate the dot product: \[ \vec{b_1} \times \vec{b_2} \cdot (\vec{a_2} - \vec{a_1}) = (-9\hat{i} + 3\hat{j} + 9\hat{k}) \cdot (3\hat{i} + 3\hat{j} + 3\hat{k}) \] \[ = -9(3) + 3(3) + 9(3) = -27 + 9 + 27 = 9 \] Thus, the distance is: \[ d = \frac{|9|}{3\sqrt{19}} = \frac{9}{3\sqrt{19}} = \frac{3}{\sqrt{19}} \] ### Final Answer The shortest distance between the two lines is: \[ \frac{3}{\sqrt{19}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the shortest distance between the following pair of line: vecr=hati+2hatj+3hatk+lamda(hati-3hatj+2hatk) and vecr=4hati+5hatj+6hatk+mu(2hati+3hatj+hatk)

Find the shortest distance between the lines vecr = hati+ hatj+hatk+lambda(3hati-hatj) and vecr=4hati-hatk+mu(2hati+3hatk)

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lamda(2hati+hatj+2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)

Find the shortest distance between the lines vecr=(hatii+2hatj+hatk)+lamda(2hati+hatj=2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

Find the shortest distance between lines vecr = 6hati+2hatj+2hatk+lambda(hati-2hatj+2hatk) and vecr = -4hati-hatk +mu(3hati-2hatj-2hatk) .

Find the shortest distance between the following pair of line: vecr=hati+2hatj+hatk+lamda(hati-hatj+hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk)

The equation of plane which passes through the point of intersection of lines vecr=hati+2hatj+3hatk+lamda(3hati+hatj+2hatk) and vecr=3hati+hatj+2hatk+mu(hati+2hatj+3hatk) where lamda,muinR and has the greastest distance from the origin is :

Find the shortest distance between the following pair of line: vecr=hati+2hatj-4hatk+lamda(2hati+3hatj+6hatk) and vecr=3hati+3hatj-5hatk+mu(2hati+3hatj+6hatk) .