Home
Class 12
MATHS
Solve for x, if : tan (cos^(-1)x)=(2)/(s...

Solve for x, if : `tan (cos^(-1)x)=(2)/(sqrt(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\cos^{-1} x) = \frac{2}{\sqrt{5}} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan(\cos^{-1} x) = \frac{2}{\sqrt{5}} \] ### Step 2: Let \( \theta = \cos^{-1} x \) From the equation, we can set: \[ \theta = \cos^{-1} x \] Thus, we have: \[ \tan \theta = \frac{2}{\sqrt{5}} \] ### Step 3: Create a right triangle Using the definition of tangent, we can represent this as a right triangle where: - The opposite side (perpendicular) is 2 - The adjacent side (base) is \( \sqrt{5} \) ### Step 4: Find the hypotenuse using Pythagorean theorem Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Opposite}^2 + \text{Adjacent}^2 \] Substituting the values: \[ h^2 = 2^2 + (\sqrt{5})^2 = 4 + 5 = 9 \] Thus, the hypotenuse \( h \) is: \[ h = \sqrt{9} = 3 \] ### Step 5: Find \( \cos \theta \) Now, we can find \( \cos \theta \): \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\sqrt{5}}{3} \] ### Step 6: Relate back to \( x \) Since \( \theta = \cos^{-1} x \), we have: \[ x = \cos(\theta) = \frac{\sqrt{5}}{3} \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{\frac{\sqrt{5}}{3}} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve for x : tan^(2)(x-5^(@))=3

Solve for x : cos(x/2+10^(@))=sqrt(3)/2

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : 2tan^(-1)(cosx)=tan^(-1)(2cos e cx)

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

tan ^(-1)(cos sqrt(x))

Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2) .