Home
Class 12
MATHS
Using properties of definite integrals,...

Using properties of definite integrals, evaluate:
`int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx, \] we can use the properties of definite integrals. ### Step 1: Apply the property of definite integrals We know that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). So we can write: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right)}{1 + \sin\left(\frac{\pi}{2} - x\right) \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the integrand Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \cos x \sin x} \, dx. \] ### Step 3: Combine the integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \sin x \cos x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin x - \cos x}{1 + \sin x \cos x} + \frac{\cos x - \sin x}{1 + \sin x \cos x} \right) \, dx. \] ### Step 4: Simplify the sum The terms in the integrand cancel out: \[ \sin x - \cos x + \cos x - \sin x = 0. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 0 \, dx = 0. \] ### Step 5: Solve for \( I \) This implies: \[ 2I = 0 \implies I = 0. \] ### Final Result The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx = 0. \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

Evaluate : int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) cos^2x dx