Home
Class 12
MATHS
If logy=tan^(-1)x, prove that : (1+x^(2)...

If `logy=tan^(-1)x`, prove that : `(1+x^(2)) (d^(2)y)/(dx^(2))+(2x-1)(dy)/(dx)=0`

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

If x=tan(1/a log y) , prove that (1+x^2) (d^2y)/(dx^2)+(2x-a) (dy)/(dx)=0

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y= (sec^(-1)x)^(2) , prove that x^(2)(x^(2)-1) (d^(2)y)/(dx^(2)) +x(2x^(2)-1) (dy)/(dx) -2=0 .

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .

(i) If y^(1//m) + y^(-1//m) = 2x , then prove that (x^(2)-1) (d^(2)y)/(dx^(2)) + x (dy)/(dx) - m^(2)y =0 (ii) If y = ln (x + sqrt(1+x^(2))) , then prove that (1+x^(2)) (d^(2)y)/(dx^(2)) + x (dy)/(dx)=0

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .

If x=tan(1/alogy)\ , show that (1+x^2)(d^2\ y)/(dx^2)+(2x-a)(dy)/(dx)=0

If x=tan(1/alogy) , show that (1+x^2)(d^2y)/(dx^2)+(2x-a)(dy)/(dx)=0 .