Home
Class 12
MATHS
Find a unit vector perpendicular to each...

Find a unit vector perpendicular to each of the vectors `2veca+vecb and veca-2vecb` where `veca=hati+2hatj-hatk and vecb=hati+hatj+hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector perpendicular to the vectors \(2\vec{A} + \vec{B}\) and \(\vec{A} - 2\vec{B}\), where \(\vec{A} = \hat{i} + 2\hat{j} - \hat{k}\) and \(\vec{B} = \hat{i} + \hat{j} + \hat{k}\), we can follow these steps: ### Step 1: Calculate \(2\vec{A} + \vec{B}\) First, we need to calculate \(2\vec{A}\) and then add \(\vec{B}\): \[ 2\vec{A} = 2(\hat{i} + 2\hat{j} - \hat{k}) = 2\hat{i} + 4\hat{j} - 2\hat{k} \] Now, add \(\vec{B}\): \[ \vec{B} = \hat{i} + \hat{j} + \hat{k} \] So, \[ 2\vec{A} + \vec{B} = (2\hat{i} + 4\hat{j} - 2\hat{k}) + (\hat{i} + \hat{j} + \hat{k}) = (2 + 1)\hat{i} + (4 + 1)\hat{j} + (-2 + 1)\hat{k} = 3\hat{i} + 5\hat{j} - \hat{k} \] ### Step 2: Calculate \(\vec{A} - 2\vec{B}\) Next, we calculate \(-2\vec{B}\): \[ -2\vec{B} = -2(\hat{i} + \hat{j} + \hat{k}) = -2\hat{i} - 2\hat{j} - 2\hat{k} \] Now, add \(\vec{A}\): \[ \vec{A} - 2\vec{B} = (\hat{i} + 2\hat{j} - \hat{k}) + (-2\hat{i} - 2\hat{j} - 2\hat{k}) = (1 - 2)\hat{i} + (2 - 2)\hat{j} + (-1 - 2)\hat{k} = -\hat{i} + 0\hat{j} - 3\hat{k} \] ### Step 3: Find the cross product \((2\vec{A} + \vec{B}) \times (\vec{A} - 2\vec{B})\) Now we compute the cross product: \[ \vec{U} = 2\vec{A} + \vec{B} = 3\hat{i} + 5\hat{j} - \hat{k} \] \[ \vec{V} = \vec{A} - 2\vec{B} = -\hat{i} - 3\hat{k} \] We can set up the determinant for the cross product: \[ \vec{U} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 5 & -1 \\ -1 & 0 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 5 & -1 \\ 0 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -1 \\ -1 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 5 \\ -1 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 5 & -1 \\ 0 & -3 \end{vmatrix} = (5)(-3) - (0)(-1) = -15\) 2. \(\begin{vmatrix} 3 & -1 \\ -1 & -3 \end{vmatrix} = (3)(-3) - (-1)(-1) = -9 - 1 = -10\) 3. \(\begin{vmatrix} 3 & 5 \\ -1 & 0 \end{vmatrix} = (3)(0) - (5)(-1) = 0 + 5 = 5\) Putting it all together: \[ \vec{U} \times \vec{V} = -15\hat{i} + 10\hat{j} + 5\hat{k} \] ### Step 4: Find the unit vector Now, we need to find the magnitude of the vector \(-15\hat{i} + 10\hat{j} + 5\hat{k}\): \[ \|\vec{U} \times \vec{V}\| = \sqrt{(-15)^2 + (10)^2 + (5)^2} = \sqrt{225 + 100 + 25} = \sqrt{350} = 5\sqrt{14} \] Now, the unit vector is given by: \[ \hat{n} = \frac{\vec{U} \times \vec{V}}{\|\vec{U} \times \vec{V}\|} = \frac{-15\hat{i} + 10\hat{j} + 5\hat{k}}{5\sqrt{14}} = \frac{-3\hat{i} + 2\hat{j} + \hat{k}}{\sqrt{14}} \] ### Final Answer Thus, the required unit vector perpendicular to both \(2\vec{A} + \vec{B}\) and \(\vec{A} - 2\vec{B}\) is: \[ \hat{n} = \frac{-3\hat{i} + 2\hat{j} + \hat{k}}{\sqrt{14}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find a unity vector perpendicular to each of the vectors (veca+vecb) and (veca-vecb) , where veca=hati+hatj+hatk and vecb=hati+2hatj+3hatk

Find a unit vector perpendicular to each of the vectors veca+vecb,veca-vecb" where vectors a "veca=3hati+2hatj+2hatkandvecb=hati+2hatj-2hatk

Find a unit vector perpendicular to the plane of two vectors veca and vecb where veca=4hati-hatj+3hatk and vecb=-2hati+hatj-hatk

Find a unit vector perpendicular to the plane of two vectors veca and vecb where veca=hati-hatj and vecb=hatj+hatk

Find the angle between the vectors veca+vecb and veca-vecb if veca=2hati-hatj+3hatk and vecb=3hati+hatj-2hatk .

Find a vector whose magnitude is 3 units and which is perpendicular to the vectors veca and vecb where veca=3hati+hatj-4hatk and vecb=6hati+hatj-2hatk

Find a unit vector perpendicular to both the vectors. vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .

Find a unit vector perpendicular to the plane of two vectros. veca=hati-hatj+2hatk and vecb=2hati+3hatj-hatk

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Find (veca+3vecb)*(2veca-vecb) . If veca=hati+hatj+2hatk, hatb=2hati+2hatj-hatk