Home
Class 12
MATHS
Evaluate : int(4)^(5)|x-5|dx...

Evaluate : `int_(4)^(5)|x-5|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{4}^{5} |x - 5| \, dx\), we will follow these steps: ### Step 1: Analyze the absolute value function The expression \(|x - 5|\) can be simplified based on the value of \(x\): - For \(x < 5\), \(|x - 5| = 5 - x\). - For \(x = 5\), \(|x - 5| = 0\). Since our limits of integration are from 4 to 5, we will use \(|x - 5| = 5 - x\) for the entire interval \([4, 5)\). ### Step 2: Set up the integral We can rewrite the integral using the simplified expression: \[ \int_{4}^{5} |x - 5| \, dx = \int_{4}^{5} (5 - x) \, dx \] ### Step 3: Integrate the function Now we will integrate \(5 - x\): \[ \int (5 - x) \, dx = 5x - \frac{x^2}{2} + C \] ### Step 4: Evaluate the definite integral Now we will evaluate this integral from 4 to 5: \[ \left[ 5x - \frac{x^2}{2} \right]_{4}^{5} \] Calculating at the upper limit \(x = 5\): \[ 5(5) - \frac{(5)^2}{2} = 25 - \frac{25}{2} = 25 - 12.5 = 12.5 \] Calculating at the lower limit \(x = 4\): \[ 5(4) - \frac{(4)^2}{2} = 20 - \frac{16}{2} = 20 - 8 = 12 \] ### Step 5: Subtract the results Now we subtract the result at the lower limit from the result at the upper limit: \[ 12.5 - 12 = 0.5 \] Thus, the value of the integral is: \[ \int_{4}^{5} |x - 5| \, dx = 0.5 \] ### Final Answer \[ \int_{4}^{5} |x - 5| \, dx = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-2020

    ICSE|Exercise SECTION B|8 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2016

    ICSE|Exercise SECTION-C|6 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(8) |x-5|dx

Evaluate: int_(2)^(8)|x-5|dx

Evaluate: int _(4) ^(5) | x-5| dx

Evaluate int(2-x)(5-x)\dx

Evaluate : int _(-5)^(5) ( x^(17) +sin ^(195)x) dx

Evaluate : int_(0)^(a)x^(5//2)sqrt(a-x)dx

Evaluate: int_3^5(2-x)dx

Evaluate : int_(0)^(pi) (dx)/(5+4cosx)

Evaluate: int (x-3)(5-x) dx

Evaluate: int(5x+3)\ dx