Home
Class 12
MATHS
Usinfg L' Hospital's rule, evaluate : ...

Usinfg L' Hospital's rule, evaluate :
`lim_(xrarr0)(xe^(x)-"log"(1+x))/x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2} \) using L'Hôpital's rule, we will follow these steps: ### Step 1: Check the form of the limit First, we need to check if the limit is in an indeterminate form (0/0 or ∞/∞). - As \( x \to 0 \): - The term \( xe^x \) approaches \( 0 \cdot e^0 = 0 \). - The term \( \log(1+x) \) approaches \( \log(1) = 0 \). - The denominator \( x^2 \) approaches \( 0 \). Since both the numerator and denominator approach 0, we have the indeterminate form \( \frac{0}{0} \), which allows us to apply L'Hôpital's rule. ### Step 2: Differentiate the numerator and denominator We will differentiate the numerator and the denominator separately. - The derivative of the numerator \( xe^x - \log(1+x) \): - Using the product rule for \( xe^x \): \[ \frac{d}{dx}(xe^x) = e^x + xe^x \] - The derivative of \( \log(1+x) \) is: \[ \frac{d}{dx}(\log(1+x)) = \frac{1}{1+x} \] - Therefore, the derivative of the numerator is: \[ e^x + xe^x - \frac{1}{1+x} \] - The derivative of the denominator \( x^2 \) is: \[ \frac{d}{dx}(x^2) = 2x \] ### Step 3: Apply L'Hôpital's Rule Now we can apply L'Hôpital's rule: \[ \lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2} = \lim_{x \to 0} \frac{e^x + xe^x - \frac{1}{1+x}}{2x} \] ### Step 4: Evaluate the new limit Next, we substitute \( x = 0 \) into the new limit: - The numerator becomes: \[ e^0 + 0 \cdot e^0 - \frac{1}{1+0} = 1 + 0 - 1 = 0 \] - The denominator becomes: \[ 2 \cdot 0 = 0 \] Since we still have the form \( \frac{0}{0} \), we apply L'Hôpital's rule again. ### Step 5: Differentiate again Now we differentiate the new numerator and denominator again: - The derivative of the numerator \( e^x + xe^x - \frac{1}{1+x} \): - The derivative of \( e^x \) is \( e^x \). - The derivative of \( xe^x \) is \( e^x + xe^x \). - The derivative of \( -\frac{1}{1+x} \) is: \[ \frac{1}{(1+x)^2} \] - So, the new numerator is: \[ e^x + (e^x + xe^x) + \frac{1}{(1+x)^2} = 2e^x + xe^x + \frac{1}{(1+x)^2} \] - The derivative of the denominator \( 2x \) is: \[ 2 \] ### Step 6: Apply L'Hôpital's Rule again Now we apply L'Hôpital's rule again: \[ \lim_{x \to 0} \frac{2e^x + xe^x + \frac{1}{(1+x)^2}}{2} \] ### Step 7: Evaluate the limit Substituting \( x = 0 \) gives: - The numerator becomes: \[ 2e^0 + 0 \cdot e^0 + \frac{1}{(1+0)^2} = 2 + 0 + 1 = 3 \] - The denominator is \( 2 \). Thus, the limit evaluates to: \[ \frac{3}{2} \] ### Final Answer The final answer is: \[ \lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2} = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-2020

    ICSE|Exercise SECTION B|8 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2016

    ICSE|Exercise SECTION-C|6 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xrarr0)x^x

Using L' Hospital's rule evaluate: lim_(x to 0) (e^x−1)/x

Using L'Hospital's rule, evaluate : lim_(xrarr0)((e^(x)-e^(-x)-2x))/(x-"sin"x)

Using L Hospital rule evaluate lim_(xrarr0) (e^(x)-1-x)/(x(e^(x)-1))

Using L. Hospital.s rule, evaluate: lim _(x to 0) "" (x e ^(x) -log ( 1 + x ))/( x ^(2))

Using L' Hospital's rule, evaluate: lim_(x to 0) ((1)/(x^(2))-(cotx)/(x))

Using L' Hospital's Rule evaluate : Lim_(x to o)(1+sinx)^(cotx)

lim_(xrarr0)(x^3 log x)

Using L'Hospital's rule, evaluate : lim_(x to 0) (x-sinx)/(x^(2)sinx) .

lim_(xrarr0) (xcos x-log(1+x))/(x^2) equals