Home
Class 12
MATHS
Evaluate : int"tan^(-1)sqrt((1-x)/(1+x...

Evaluate :
`int"tan^(-1)sqrt((1-x)/(1+x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \tan^{-1} \left( \sqrt{\frac{1-x}{1+x}} \right) dx, \] we can follow these steps: ### Step 1: Substitution Let \( x = \cos(2\theta) \). Then, we need to find \( dx \) in terms of \( d\theta \). \[ dx = -2\sin(2\theta) d\theta \] ### Step 2: Rewrite the Integral Now substitute \( x = \cos(2\theta) \) into the integral: \[ \int \tan^{-1} \left( \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}} \right) (-2\sin(2\theta)) d\theta \] ### Step 3: Simplify the Argument of \( \tan^{-1} \) Using the identities \( 1 - \cos(2\theta) = 2\sin^2(\theta) \) and \( 1 + \cos(2\theta) = 2\cos^2(\theta) \): \[ \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}} = \sqrt{\frac{2\sin^2(\theta)}{2\cos^2(\theta)}} = \tan(\theta) \] Thus, the integral becomes: \[ \int \tan^{-1}(\tan(\theta)) (-2\sin(2\theta)) d\theta \] ### Step 4: Simplify \( \tan^{-1}(\tan(\theta)) \) Since \( \tan^{-1}(\tan(\theta)) = \theta \) for \( \theta \) in the principal range, we have: \[ \int \theta (-2\sin(2\theta)) d\theta \] ### Step 5: Integrate by Parts Let \( u = \theta \) and \( dv = -2\sin(2\theta) d\theta \). Then \( du = d\theta \) and \( v = \int -2\sin(2\theta) d\theta = \cos(2\theta) \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Thus: \[ \int \theta (-2\sin(2\theta)) d\theta = \theta \cos(2\theta) - \int \cos(2\theta) d\theta \] ### Step 6: Evaluate the Remaining Integral The integral of \( \cos(2\theta) \) is: \[ \int \cos(2\theta) d\theta = \frac{1}{2}\sin(2\theta) \] So we have: \[ \theta \cos(2\theta) - \frac{1}{2}\sin(2\theta) + C \] ### Step 7: Back Substitute Recall that \( \theta = \frac{1}{2} \cos^{-1}(x) \). Therefore: \[ \theta \cos(2\theta) = \frac{1}{2} \cos^{-1}(x) \cdot \cos(\cos^{-1}(x)) = \frac{1}{2} \cos^{-1}(x) \cdot x \] And \( \sin(2\theta) = 2\sin(\theta)\cos(\theta) = 2\sqrt{1 - x^2} \cdot x \). Putting it all together, we get: \[ \frac{1}{2} x \cos^{-1}(x) - \frac{1}{2} \cdot 2\sqrt{1 - x^2} \cdot x + C \] Thus, the final answer is: \[ \frac{1}{2} x \cos^{-1}(x) - \sqrt{1 - x^2} \cdot x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-2020

    ICSE|Exercise SECTION B|8 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2016

    ICSE|Exercise SECTION-C|6 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int cos {2 tan^(-1) sqrt((1-x)/(1+x))}dx

Evaluate int tan^(-1) x dx

Evaluate: int tan ^(-1) sqrt x dx

Evaluate : int_1^16tan^(- 1)sqrt(sqrt(x)-1)dx

Evaluate: int(e^tan^(-1)(x))/(1+x^2)\ dx

Evaluate: int(tan^(-1)x)/(1+x^2)dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int(sin^(-1)x)/(sqrt(1-x^2))\ dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))\ dx

Evaluate : int ( tan (sin^(-1)x))/(sqrt(1-x^(2))) " dx"