Home
Class 12
MATHS
Evaluate : int(2x+7)/(x^(2)-x-2)dx...

Evaluate : `int(2x+7)/(x^(2)-x-2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{2x + 7}{x^2 - x - 2} \, dx \), we can follow these steps: ### Step 1: Factor the Denominator First, we need to factor the quadratic expression in the denominator \( x^2 - x - 2 \). The factors of \( x^2 - x - 2 \) can be found by looking for two numbers that multiply to \(-2\) and add to \(-1\). These numbers are \(-2\) and \(1\). Thus, we can factor it as: \[ x^2 - x - 2 = (x - 2)(x + 1) \] ### Step 2: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{2x + 7}{(x - 2)(x + 1)} \, dx \] ### Step 3: Partial Fraction Decomposition Next, we will use partial fraction decomposition to express \( \frac{2x + 7}{(x - 2)(x + 1)} \) in a simpler form: \[ \frac{2x + 7}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1} \] Multiplying through by the denominator \((x - 2)(x + 1)\) gives: \[ 2x + 7 = A(x + 1) + B(x - 2) \] ### Step 4: Solve for A and B Expanding the right-hand side: \[ 2x + 7 = Ax + A + Bx - 2B = (A + B)x + (A - 2B) \] Now, we can equate coefficients: 1. \( A + B = 2 \) 2. \( A - 2B = 7 \) From the first equation, we can express \( A \) in terms of \( B \): \[ A = 2 - B \] Substituting into the second equation: \[ (2 - B) - 2B = 7 \implies 2 - 3B = 7 \implies -3B = 5 \implies B = -\frac{5}{3} \] Now substituting back to find \( A \): \[ A = 2 - \left(-\frac{5}{3}\right) = 2 + \frac{5}{3} = \frac{6}{3} + \frac{5}{3} = \frac{11}{3} \] ### Step 5: Rewrite the Integral Now we can rewrite the integral as: \[ \int \left( \frac{11/3}{x - 2} - \frac{5/3}{x + 1} \right) \, dx \] ### Step 6: Integrate Now we can integrate term by term: \[ \int \frac{11/3}{x - 2} \, dx - \int \frac{5/3}{x + 1} \, dx \] This results in: \[ \frac{11}{3} \ln |x - 2| - \frac{5}{3} \ln |x + 1| + C \] ### Step 7: Combine the Logarithms Using the properties of logarithms, we can combine the logarithmic terms: \[ = \frac{11}{3} \ln |x - 2| - \frac{5}{3} \ln |x + 1| + C = \frac{1}{3} \ln \left( \frac{(x - 2)^{11}}{(x + 1)^{5}} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{2x + 7}{x^2 - x - 2} \, dx = \frac{1}{3} \ln \left( \frac{(x - 2)^{11}}{(x + 1)^{5}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-2020

    ICSE|Exercise SECTION B|8 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2016

    ICSE|Exercise SECTION-C|6 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(2x+5)/(x^2-x-2)\ dx

Evaluate : int(x)/((x-1)^(2)(x+2))dx .

Evaluate: int(e^(2x))/(e^(2x)-2)dx

Evaluate: int(2x)/(2+x-x^2)\ dx

Evaluate: int(2x+1)/(x^2+x+3)dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate: int(x^2)/(x^4-x^2-12)\ dx

Evaluate: int(x^7)/((a^2-x^2)^5)dx

Evaluate: int(2x+5)/(x^2+5x-7)\ dx

Evaluate: int(x^2+x+1)/(x^2-x)dx