Home
Class 9
MATHS
Find the square of : (i) (3sqrt(5))/5"...

Find the square of :
(i) `(3sqrt(5))/5" (ii) "3+2sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the question step by step. ### Question: Find the square of: (i) \(\frac{3\sqrt{5}}{5}\) (ii) \(3 + 2\sqrt{5}\) ### Solution: #### Part (i): Find the square of \(\frac{3\sqrt{5}}{5}\) 1. **Write the expression**: \[ \left(\frac{3\sqrt{5}}{5}\right)^2 \] 2. **Square the numerator and the denominator**: \[ = \frac{(3\sqrt{5})^2}{5^2} \] 3. **Calculate the square of the numerator**: - The square of \(3\) is \(9\). - The square of \(\sqrt{5}\) is \(5\). \[ (3\sqrt{5})^2 = 3^2 \cdot (\sqrt{5})^2 = 9 \cdot 5 = 45 \] 4. **Calculate the square of the denominator**: \[ 5^2 = 25 \] 5. **Combine the results**: \[ = \frac{45}{25} \] 6. **Simplify the fraction**: - Both \(45\) and \(25\) can be divided by \(5\). \[ = \frac{9}{5} \] 7. **Convert to a mixed number (optional)**: \[ = 1 \frac{4}{5} \] #### Part (ii): Find the square of \(3 + 2\sqrt{5}\) 1. **Write the expression**: \[ (3 + 2\sqrt{5})^2 \] 2. **Apply the identity \((a + b)^2 = a^2 + 2ab + b^2\)**: - Let \(a = 3\) and \(b = 2\sqrt{5}\). \[ = 3^2 + 2 \cdot 3 \cdot (2\sqrt{5}) + (2\sqrt{5})^2 \] 3. **Calculate each term**: - \(3^2 = 9\) - \(2 \cdot 3 \cdot (2\sqrt{5}) = 12\sqrt{5}\) - \((2\sqrt{5})^2 = 4 \cdot 5 = 20\) 4. **Combine the results**: \[ = 9 + 12\sqrt{5} + 20 \] 5. **Simplify**: \[ = 29 + 12\sqrt{5} \] ### Final Answers: (i) \(\frac{9}{5}\) or \(1 \frac{4}{5}\) (ii) \(29 + 12\sqrt{5}\)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the square of : (3sqrt(5))/(5)

Find the square of : 3+2sqrt(5)

Find the square of : sqrt(5)-2

Rationalize the denominator of : (i) (2sqrt(3))/sqrt(5)" (ii) "1/(sqrt(3)-sqrt(2))

Find the value of sqrt(5) correct to 2 decimal places, then use it to find the square root of (3-sqrt(5))/(3+sqrt(5)) correct to 2 significant digits.

Find duplicate ratio of: (i) 3 : 4 (ii) 3sqrt(3) : 2sqrt(5)

Rationalise the denominator of each of the following (i) 3/(sqrt(5)) (ii) 3/(2sqrt(5))

Rationalize the denominatior and simplify to find the value of (4)/(sqrt(5) + sqrt(3)) (Given : sqrt(5) = 2.236 and sqrt(3) = 1.732)

Write the lowest rationalising factor of : (i) 5sqrt(2)" (ii) "sqrt(18)-sqrt(50)" (iii) "(2sqrt(2)+2sqrt(3))

Find the value of a and b if (i)(sqrt(3)+1)/(sqrt(3)-1)=a+bsqrt(3)" "(ii)(5+2sqrt(3))/(5-2sqrt(3))=a+bsqrt(3)