Home
Class 9
MATHS
Compare : (i) root(6 )(15) and root(4)...

Compare :
(i) `root(6 )(15) and root(4)(12)" (ii) "sqrt(24) and root(3)(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To compare the given pairs of numbers, we will follow a systematic approach by converting the roots into powers and then comparing them. ### Problem (i): Compare \( \sqrt[6]{15} \) and \( \sqrt[4]{12} \) 1. **Convert to Exponential Form**: - Let \( a = \sqrt[6]{15} = 15^{1/6} \) - Let \( b = \sqrt[4]{12} = 12^{1/4} \) 2. **Equalize the Exponents**: - To compare \( a \) and \( b \), we can raise both to the power of 12 (the least common multiple of 6 and 4): \[ a^{12} = (15^{1/6})^{12} = 15^2 = 225 \] \[ b^{12} = (12^{1/4})^{12} = 12^3 = 1728 \] 3. **Compare the Results**: - Now we compare \( 225 \) and \( 1728 \): \[ 225 < 1728 \] Therefore, \( a < b \). 4. **Conclusion**: \[ \sqrt[6]{15} < \sqrt[4]{12} \] ### Problem (ii): Compare \( \sqrt{24} \) and \( \sqrt[3]{25} \) 1. **Convert to Exponential Form**: - Let \( c = \sqrt{24} = 24^{1/2} \) - Let \( d = \sqrt[3]{25} = 25^{1/3} \) 2. **Equalize the Exponents**: - To compare \( c \) and \( d \), we can raise both to the power of 6 (the least common multiple of 2 and 3): \[ c^{6} = (24^{1/2})^{6} = 24^3 \] \[ d^{6} = (25^{1/3})^{6} = 25^2 = 625 \] 3. **Calculate \( 24^3 \)**: - Now we calculate \( 24^3 \): \[ 24^3 = 24 \times 24 \times 24 = 13824 \] 4. **Compare the Results**: - Now we compare \( 13824 \) and \( 625 \): \[ 13824 > 625 \] Therefore, \( c > d \). 5. **Conclusion**: \[ \sqrt{24} > \sqrt[3]{25} \] ### Final Answers: 1. \( \sqrt[6]{15} < \sqrt[4]{12} \) 2. \( \sqrt{24} > \sqrt[3]{25} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Compare : root(6)15 and root(4) 12

Compare : sqrt(24) and root (3)35

Write in ascending order : (i) 3sqrt(5) and 4sqrt(3) (ii) 2root(3)(5) and 3root(3)(2) (iii) 6sqrt(5), 7sqrt(3) and 8sqrt(2)

Simplify each of the following : (i) root(5)(16) times root(5)(2)" (ii) "root(4)(243)/root(4)(3) (iii) (3+sqrt(2))(4+sqrt(7))" (iv) "(sqrt(3)-sqrt(2))^(2)

Compare : root(4) 8 and root(6)22

Simplify each of the following: (i) root(5)(16)xxroot(5)(2) (ii) root(4)(243)/root(4)(3)

(root(4)(64))/(root(4)(4))

Compare : root(3) 4 and sqrt(3)

State, with reason, which of the following are surds and which are not : (i) sqrt(180) " (ii) "root(3)(64)" (iii) "root(3)(25) times root(3)(40)

sqrt4 , root4(8) , root3(5)