To solve the problem, we will analyze the given universal set and categorize the numbers into rational numbers, irrational numbers, integers, and non-negative integers.
### Given Universal Set:
\[ U = \{-6, -\frac{23}{4}, -\sqrt{4}, -\frac{3}{5}, -\frac{3}{8}, 0, \frac{4}{5}, 1, \frac{12}{5}, \sqrt{8}, 3.01, \pi, 8.47\} \]
### Step 1: Identify Rational Numbers
Rational numbers are numbers that can be expressed as the quotient of two integers (i.e., in the form \(\frac{p}{q}\), where \(q \neq 0\)).
- From the universal set, we identify:
- \(-6\) (integer)
- \(-\frac{23}{4}\) (fraction)
- \(-\sqrt{4} = -2\) (integer)
- \(-\frac{3}{5}\) (fraction)
- \(-\frac{3}{8}\) (fraction)
- \(0\) (integer)
- \(\frac{4}{5}\) (fraction)
- \(1\) (integer)
- \(\frac{12}{5}\) (fraction)
- \(3.01\) (can be expressed as \(\frac{301}{100}\))
- \(8.47\) (can be expressed as \(\frac{847}{100}\))
**Set of Rational Numbers:**
\[ R = \{-6, -\frac{23}{4}, -2, -\frac{3}{5}, -\frac{3}{8}, 0, \frac{4}{5}, 1, \frac{12}{5}, 3.01, 8.47\} \]
### Step 2: Identify Irrational Numbers
Irrational numbers cannot be expressed as a fraction of two integers.
- From the universal set, we identify:
- \(\sqrt{8} = 2\sqrt{2}\) (not a perfect square, thus irrational)
- \(\pi\) (known to be irrational)
**Set of Irrational Numbers:**
\[ I = \{2\sqrt{2}, \pi\} \]
### Step 3: Identify Integers
Integers are whole numbers that can be positive, negative, or zero.
- From the universal set, we identify:
- \(-6\) (negative integer)
- \(-2\) (from \(-\sqrt{4}\))
- \(0\) (zero)
- \(1\) (positive integer)
**Set of Integers:**
\[ Z = \{-6, -2, 0, 1\} \]
### Step 4: Identify Non-Negative Integers
Non-negative integers are integers that are either positive or zero.
- From the integers identified, we have:
- \(0\) (zero)
- \(1\) (positive integer)
**Set of Non-Negative Integers:**
\[ N = \{0, 1\} \]
### Final Results
1. **Set of Rational Numbers:**
\[ R = \{-6, -\frac{23}{4}, -2, -\frac{3}{5}, -\frac{3}{8}, 0, \frac{4}{5}, 1, \frac{12}{5}, 3.01, 8.47\} \]
2. **Set of Irrational Numbers:**
\[ I = \{2\sqrt{2}, \pi\} \]
3. **Set of Integers:**
\[ Z = \{-6, -2, 0, 1\} \]
4. **Set of Non-Negative Integers:**
\[ N = \{0, 1\} \]