Home
Class 9
MATHS
Simplify : sqrt(18)/(5sqrt(18)+3sqrt(72)...

Simplify : `sqrt(18)/(5sqrt(18)+3sqrt(72)-2sqrt(162))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{\sqrt{18}}{5\sqrt{18} + 3\sqrt{72} - 2\sqrt{162}}\), we will follow these steps: ### Step 1: Simplify the square roots in the expression - \(\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}\) - \(\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}\) - \(\sqrt{162} = \sqrt{81 \times 2} = 9\sqrt{2}\) ### Step 2: Substitute the simplified square roots back into the expression Now, we can substitute these values back into the expression: \[ \frac{\sqrt{18}}{5\sqrt{18} + 3\sqrt{72} - 2\sqrt{162}} = \frac{3\sqrt{2}}{5(3\sqrt{2}) + 3(6\sqrt{2}) - 2(9\sqrt{2})} \] ### Step 3: Simplify the denominator Calculating the denominator: - \(5(3\sqrt{2}) = 15\sqrt{2}\) - \(3(6\sqrt{2}) = 18\sqrt{2}\) - \(-2(9\sqrt{2}) = -18\sqrt{2}\) Now, combine these: \[ 15\sqrt{2} + 18\sqrt{2} - 18\sqrt{2} = 15\sqrt{2} \] ### Step 4: Rewrite the expression Now, we can rewrite the expression as: \[ \frac{3\sqrt{2}}{15\sqrt{2}} \] ### Step 5: Cancel out \(\sqrt{2}\) Since \(\sqrt{2}\) is present in both the numerator and the denominator, we can cancel it out: \[ \frac{3}{15} \] ### Step 6: Simplify the fraction Now simplify \(\frac{3}{15}\): \[ \frac{3}{15} = \frac{1}{5} \] ### Final Answer Thus, the simplified form of the expression is: \[ \frac{1}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (sqrt(-2))/(sqrt(-8))

Simplify (5+sqrt(7))(5+sqrt(2))

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

Simplify : sqrt(3+2sqrt(2))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

Simplify: (2sqrt(2)+sqrt(3))/(2sqrt(2)-sqrt(3))

Simplify : 3sqrt(-16)-2sqrt(-9)+4sqrt(-36)

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt99+99sqrt100