Home
Class 9
MATHS
Evaluate, Correct to one place to decima...

Evaluate, Correct to one place to decimal, the expression `5/(sqrt(20)-sqrt(10))," if "sqrt(5)=22 and sqrt(10)=3.2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \frac{5}{\sqrt{20} - \sqrt{10}} \) given that \( \sqrt{5} = 2.2 \) and \( \sqrt{10} = 3.2 \), we will follow these steps: ### Step 1: Rationalize the denominator To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{20} + \sqrt{10} \). \[ \frac{5}{\sqrt{20} - \sqrt{10}} \cdot \frac{\sqrt{20} + \sqrt{10}}{\sqrt{20} + \sqrt{10}} = \frac{5(\sqrt{20} + \sqrt{10})}{(\sqrt{20})^2 - (\sqrt{10})^2} \] ### Step 2: Simplify the denominator Using the identity \( a^2 - b^2 = (a-b)(a+b) \), we can simplify the denominator: \[ (\sqrt{20})^2 - (\sqrt{10})^2 = 20 - 10 = 10 \] ### Step 3: Substitute values for \( \sqrt{20} \) and \( \sqrt{10} \) We know that \( \sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5} \). Therefore, we can substitute \( \sqrt{5} = 2.2 \): \[ \sqrt{20} = 2 \cdot 2.2 = 4.4 \] Now we can substitute \( \sqrt{10} = 3.2 \): ### Step 4: Substitute into the expression Now we substitute these values back into the expression: \[ \frac{5(4.4 + 3.2)}{10} \] ### Step 5: Calculate the numerator Calculate \( 4.4 + 3.2 \): \[ 4.4 + 3.2 = 7.6 \] Now substitute this back into the expression: \[ \frac{5 \cdot 7.6}{10} \] ### Step 6: Calculate the final value Now multiply \( 5 \cdot 7.6 \): \[ 5 \cdot 7.6 = 38 \] Now divide by \( 10 \): \[ \frac{38}{10} = 3.8 \] ### Final Answer Thus, the value of the expression \( \frac{5}{\sqrt{20} - \sqrt{10}} \) correct to one decimal place is \( \boxed{3.8} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sqrt(26) correct upto two place of decimal

Find the value to three places of decimals, of sqrt(10) : It is given that sqrt(2)=1. 414 ,sqrt(3)=1. 732 , and sqrt(5)=2. 236 (approx.)

Simplify the following expressions: (i) (sqrt(3)+sqrt(7))^2 (ii) (2sqrt(5)+3sqrt(2))^2

Find the values of each of the following correct to three places of decimals, it being given that sqrt(2)=1. 4142 ,\ sqrt(3)=1. 732 ,\ \ sqrt(5)=2. 2360 ,\ sqrt(6)=2. 4495 and sqrt(10)=3. 162. (i)\ (3-sqrt(5))/(3+2sqrt(5)) (ii)\ (1+sqrt(2))/(3-2sqrt(2))

Simplify the following expressions : (sqrt5-sqrt2)(sqrt5+sqrt2)

Factorize each of the following expressions : (i) 4sqrt(3)x^2+5x-2sqrt(3) , (ii) 5sqrt(5)x^2+30 x+8sqrt(5)

Find the value to three places of decimals; of sqrt15 . It is given that sqrt(2)=1. 414 ,sqrt(3)=1. 732 ,sqrt(10)=3. 162a n dsqrt(5)=2. 236 (approx.).

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

Simplify the following expressions: (i) (3+sqrt(3))(2+sqrt(2)) (ii) (5+sqrt(7))(2+sqrt(5))

Evaluate : (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80)), is being given that sqrt(5)=2. 236 and sqrt(10)=3. 1362