Home
Class 9
MATHS
Rationalize the denominator : 14/(5sqr...

Rationalize the denominator :
`14/(5sqrt(3)-sqrt(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator of the expression \( \frac{14}{5\sqrt{3} - \sqrt{5}} \), we will follow these steps: ### Step 1: Identify the conjugate of the denominator The denominator is \( 5\sqrt{3} - \sqrt{5} \). The conjugate of this expression is \( 5\sqrt{3} + \sqrt{5} \). ### Step 2: Multiply the numerator and denominator by the conjugate We multiply both the numerator and the denominator by the conjugate: \[ \frac{14}{5\sqrt{3} - \sqrt{5}} \cdot \frac{5\sqrt{3} + \sqrt{5}}{5\sqrt{3} + \sqrt{5}} \] ### Step 3: Simplify the numerator The numerator becomes: \[ 14(5\sqrt{3} + \sqrt{5}) = 70\sqrt{3} + 14\sqrt{5} \] ### Step 4: Simplify the denominator using the difference of squares The denominator becomes: \[ (5\sqrt{3})^2 - (\sqrt{5})^2 = 25 \cdot 3 - 5 = 75 - 5 = 70 \] ### Step 5: Write the final expression Now we can write the expression as: \[ \frac{70\sqrt{3} + 14\sqrt{5}}{70} \] ### Step 6: Simplify the fraction We can simplify this further: \[ \frac{70\sqrt{3}}{70} + \frac{14\sqrt{5}}{70} = \sqrt{3} + \frac{1}{5}\sqrt{5} \] Thus, the final answer is: \[ \sqrt{3} + \frac{1}{5}\sqrt{5} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalise the denominator of 5/(sqrt(3)-\ sqrt(5))

Rationalize the denominator of : (1)/(sqrt(3)-sqrt(2)+1)

Rationalise the denominator of 5/(sqrt(3)-sqrt(5))

Rationalise the denominator of 5/(sqrt(3)-sqrt(5))

Rationalize the denominator of (1)/(sqrt(2))

Rationalize the denominator of : (1)/(sqrt(3)+sqrt(2)-1)

Rationalize the denominatiors of : (sqrt(6)-sqrt(5))/(sqrt(6)+sqrt(5))

Rationalise the denominator of 2/(sqrt(3)) .

Rationalize the denominator of : (i) (2sqrt(3))/sqrt(5)" (ii) "1/(sqrt(3)-sqrt(2))

Rationalise the denominator of (11)/(5+sqrt(3))