Home
Class 9
MATHS
Rationalize the denominator and simplify...

Rationalize the denominator and simplify to find the value of `4/(sqrt(5)+sqrt(3))`, given that
`sqrt(5)=2.236 and sqrt(3)=1.732`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator and simplify the expression \( \frac{4}{\sqrt{5} + \sqrt{3}} \), follow these steps: ### Step 1: Multiply by the Conjugate To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of \( \sqrt{5} + \sqrt{3} \) is \( \sqrt{5} - \sqrt{3} \). \[ \frac{4}{\sqrt{5} + \sqrt{3}} \cdot \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{4(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} \] ### Step 2: Simplify the Denominator Using the difference of squares formula \( (a + b)(a - b) = a^2 - b^2 \), we can simplify the denominator: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] ### Step 3: Substitute the Values Now substitute the values of \( \sqrt{5} \) and \( \sqrt{3} \) into the numerator: \[ = \frac{4(\sqrt{5} - \sqrt{3})}{2} \] ### Step 4: Simplify the Numerator Now, simplify the expression: \[ = \frac{4(\sqrt{5} - \sqrt{3})}{2} = 2(\sqrt{5} - \sqrt{3}) \] ### Step 5: Substitute the Values of Square Roots Substituting the given values \( \sqrt{5} = 2.236 \) and \( \sqrt{3} = 1.732 \): \[ = 2(2.236 - 1.732) \] ### Step 6: Perform the Subtraction Calculate \( 2.236 - 1.732 \): \[ = 2(0.504) \] ### Step 7: Final Calculation Now multiply by 2: \[ = 1.008 \] Thus, the value of \( \frac{4}{\sqrt{5} + \sqrt{3}} \) is \( \boxed{1.008} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalize the denominatior and simplify to find the value of (4)/(sqrt(5) + sqrt(3)) (Given : sqrt(5) = 2.236 and sqrt(3) = 1.732)

Find the value of 6/(sqrt(5)-\ sqrt(3)) , it being given that sqrt(3)=1. 732\ \ a n d\ \ sqrt(5)=2. 236

Rationlise the denominator and simplify: (3)/( 4- sqrt3)

Rationlise the denominator and simplify: ( 1)/( 2+ sqrt 3)

Rationlise the denominator and simplify: (2)/(sqrt5+ sqrt3)

Rationalize the denominator of (1)/(sqrt(2))

Rationlise the denominator and simplify: (1)/(2sqrt5-sqrt3)

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Rationlise the denominator and simplify: (sqrt5+sqrt3)/(sqrt5-sqrt3)

Rationlise the denominator and simplify: ( 12sqrt2)/( sqrt3+ sqrt6)