Home
Class 9
MATHS
If x=(sqrt(5)-2)/(sqrt(5)+2) and y=(sqrt...

If `x=(sqrt(5)-2)/(sqrt(5)+2) and y=(sqrt(5)+2)/(sqrt(5)-2):` find
(i) `x^(2)" (ii) "y^(2)`
(iii) xy `" (iv) "x^(2)+y^(2)+xy`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find \( x^2 \), \( y^2 \), \( xy \), and \( x^2 + y^2 + xy \) given: \[ x = \frac{\sqrt{5} - 2}{\sqrt{5} + 2} \quad \text{and} \quad y = \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \] ### Step 1: Calculate \( x^2 \) We start with: \[ x^2 = \left(\frac{\sqrt{5} - 2}{\sqrt{5} + 2}\right)^2 \] Using the identity \( (a - b)^2 = a^2 - 2ab + b^2 \) and \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ x^2 = \frac{(\sqrt{5} - 2)^2}{(\sqrt{5} + 2)^2} = \frac{5 - 4\sqrt{5} + 4}{5 + 4\sqrt{5} + 4} \] Simplifying: \[ x^2 = \frac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}} \] ### Step 2: Calculate \( y^2 \) Now, we calculate \( y^2 \): \[ y^2 = \left(\frac{\sqrt{5} + 2}{\sqrt{5} - 2}\right)^2 \] Using the same identities: \[ y^2 = \frac{(\sqrt{5} + 2)^2}{(\sqrt{5} - 2)^2} = \frac{5 + 4\sqrt{5} + 4}{5 - 4\sqrt{5} + 4} \] Simplifying: \[ y^2 = \frac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} \] ### Step 3: Calculate \( xy \) Next, we find \( xy \): \[ xy = \left(\frac{\sqrt{5} - 2}{\sqrt{5} + 2}\right) \left(\frac{\sqrt{5} + 2}{\sqrt{5} - 2}\right) \] Using the identity \( (a - b)(a + b) = a^2 - b^2 \): \[ xy = \frac{(\sqrt{5})^2 - 2^2}{(\sqrt{5})^2 - 2^2} = \frac{5 - 4}{5 - 4} = \frac{1}{1} = 1 \] ### Step 4: Calculate \( x^2 + y^2 + xy \) Now we need to calculate \( x^2 + y^2 + xy \): \[ x^2 + y^2 + xy = \frac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}} + \frac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} + 1 \] To combine these fractions, we need a common denominator: \[ x^2 + y^2 + xy = \frac{(9 - 4\sqrt{5})^2 + (9 + 4\sqrt{5})^2 + (9 + 4\sqrt{5})(9 - 4\sqrt{5})}{(9 + 4\sqrt{5})(9 - 4\sqrt{5})} \] Calculating the numerator: 1. \( (9 - 4\sqrt{5})^2 = 81 - 72\sqrt{5} + 80 = 161 - 72\sqrt{5} \) 2. \( (9 + 4\sqrt{5})^2 = 81 + 72\sqrt{5} + 80 = 161 + 72\sqrt{5} \) 3. \( (9 + 4\sqrt{5})(9 - 4\sqrt{5}) = 81 - 80 = 1 \) Combining these: \[ x^2 + y^2 + xy = \frac{(161 - 72\sqrt{5}) + (161 + 72\sqrt{5}) + 1}{(9 + 4\sqrt{5})(9 - 4\sqrt{5})} \] This simplifies to: \[ x^2 + y^2 + xy = \frac{323}{1} = 323 \] ### Final Answers: 1. \( x^2 = \frac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}} \) 2. \( y^2 = \frac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} \) 3. \( xy = 1 \) 4. \( x^2 + y^2 + xy = 323 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : y^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)+ y^(2)+xy

If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqrt(5))/(2+sqrt(5)) =y , find the value of x^(2)-y^(2) .

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

Simplify : (i) (5+sqrt(5))(5-sqrt(5)) (ii) (3+2sqrt(2))(3-2sqrt(2))