Home
Class 9
MATHS
If x=2sqrt(3)+2sqrt(2), find : (i) 1/x...

If `x=2sqrt(3)+2sqrt(2)`, find :
(i) `1/x" (ii) "x+1/x" (iii) "(x+1/x)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the question. Given: \[ x = 2\sqrt{3} + 2\sqrt{2} \] We need to find: (i) \( \frac{1}{x} \) (ii) \( x + \frac{1}{x} \) (iii) \( \left( x + \frac{1}{x} \right)^2 \) ### Step 1: Find \( \frac{1}{x} \) To find \( \frac{1}{x} \), we can rationalize the denominator. 1. Start with: \[ \frac{1}{x} = \frac{1}{2\sqrt{3} + 2\sqrt{2}} \] 2. Factor out \( 2 \) from the denominator: \[ \frac{1}{x} = \frac{1}{2(\sqrt{3} + \sqrt{2})} = \frac{1}{2} \cdot \frac{1}{\sqrt{3} + \sqrt{2}} \] 3. Rationalize the denominator by multiplying the numerator and denominator by \( \sqrt{3} - \sqrt{2} \): \[ \frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2} \] 4. Therefore: \[ \frac{1}{x} = \frac{1}{2}(\sqrt{3} - \sqrt{2}) \] ### Step 2: Find \( x + \frac{1}{x} \) Now, we can find \( x + \frac{1}{x} \): 1. Substitute the values: \[ x + \frac{1}{x} = (2\sqrt{3} + 2\sqrt{2}) + \frac{1}{2}(\sqrt{3} - \sqrt{2}) \] 2. Combine the terms: \[ = 2\sqrt{3} + 2\sqrt{2} + \frac{1}{2}\sqrt{3} - \frac{1}{2}\sqrt{2} \] \[ = \left(2 + \frac{1}{2}\right)\sqrt{3} + \left(2 - \frac{1}{2}\right)\sqrt{2} \] \[ = \frac{5}{2}\sqrt{3} + \frac{3}{2}\sqrt{2} \] ### Step 3: Find \( \left( x + \frac{1}{x} \right)^2 \) Now we will square the result from Step 2: 1. Use the formula \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ \left( \frac{5}{2}\sqrt{3} + \frac{3}{2}\sqrt{2} \right)^2 \] \[ = \left(\frac{5}{2}\sqrt{3}\right)^2 + 2\left(\frac{5}{2}\sqrt{3}\right)\left(\frac{3}{2}\sqrt{2}\right) + \left(\frac{3}{2}\sqrt{2}\right)^2 \] 2. Calculate each term: - First term: \[ \left(\frac{5}{2}\sqrt{3}\right)^2 = \frac{25}{4} \cdot 3 = \frac{75}{4} \] - Second term: \[ 2 \cdot \frac{5}{2}\sqrt{3} \cdot \frac{3}{2}\sqrt{2} = \frac{15}{2}\sqrt{6} \] - Third term: \[ \left(\frac{3}{2}\sqrt{2}\right)^2 = \frac{9}{4} \cdot 2 = \frac{18}{4} = \frac{9}{2} \] 3. Combine all terms: \[ \left( x + \frac{1}{x} \right)^2 = \frac{75}{4} + \frac{15}{2}\sqrt{6} + \frac{9}{2} \] \[ = \frac{75}{4} + \frac{18}{4} + \frac{15}{2}\sqrt{6} \] \[ = \frac{93}{4} + \frac{30}{4}\sqrt{6} \] ### Final Answers: (i) \( \frac{1}{x} = \frac{\sqrt{3} - \sqrt{2}}{2} \) (ii) \( x + \frac{1}{x} = \frac{5}{2}\sqrt{3} + \frac{3}{2}\sqrt{2} \) (iii) \( \left( x + \frac{1}{x} \right)^2 = \frac{93}{4} + \frac{30}{4}\sqrt{6} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x= 2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

If x=3+2sqrt(2) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)-(1)/(x^(2))

If x=2+sqrt(3) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)+(1)/(x^(2))

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If x= 3 + 2 sqrt2 , find x- (1)/(x)

If x=(1)/(sqrt(3)+sqrt(2)) . Then find (1)/(x) .

If x = sqrt(3)- sqrt(2) find the value of x^(3)+(1)/(x^(3))- 3 (x^(2)+(1)/(x^(2)))+x+(1)/(x)

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)