Home
Class 9
MATHS
If 2(x^(2)+1)=5x, find : (i) x-(1)/(x...

If `2(x^(2)+1)=5x`, find :
`(i) x-(1)/(x)` `(ii) x^(3)-(1)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Solve the equation We start with the equation given in the problem: \[ 2(x^2 + 1) = 5x \] Expanding this, we have: \[ 2x^2 + 2 = 5x \] Rearranging the equation gives us: \[ 2x^2 - 5x + 2 = 0 \] ### Step 2: Factor or use the quadratic formula Next, we can factor the quadratic equation or use the quadratic formula. Let's factor it: The equation \( 2x^2 - 5x + 2 = 0 \) can be factored as: \[ (2x - 1)(x - 2) = 0 \] Setting each factor to zero gives us the solutions: 1. \( 2x - 1 = 0 \) → \( x = \frac{1}{2} \) 2. \( x - 2 = 0 \) → \( x = 2 \) So, the roots are \( x = \frac{1}{2} \) and \( x = 2 \). ### Step 3: Find \( x - \frac{1}{x} \) Now, we need to find \( x - \frac{1}{x} \) for both values of \( x \). **For \( x = \frac{1}{2} \):** \[ x - \frac{1}{x} = \frac{1}{2} - \frac{1}{\frac{1}{2}} = \frac{1}{2} - 2 = \frac{1}{2} - \frac{4}{2} = -\frac{3}{2} \] **For \( x = 2 \):** \[ x - \frac{1}{x} = 2 - \frac{1}{2} = 2 - 0.5 = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \] So, the values for \( x - \frac{1}{x} \) are: - For \( x = \frac{1}{2} \): \( -\frac{3}{2} \) - For \( x = 2 \): \( \frac{3}{2} \) ### Step 4: Find \( x^3 - \frac{1}{x^3} \) Next, we calculate \( x^3 - \frac{1}{x^3} \) using the identity: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right) \left( x^2 + 1 + \frac{1}{x^2} \right) \] First, we need to find \( x^2 + \frac{1}{x^2} \): Using the identity: \[ x^2 + \frac{1}{x^2} = \left( x - \frac{1}{x} \right)^2 + 2 \] **For \( x = \frac{1}{2} \):** \[ x - \frac{1}{x} = -\frac{3}{2} \] \[ x^2 + \frac{1}{x^2} = \left(-\frac{3}{2}\right)^2 + 2 = \frac{9}{4} + 2 = \frac{9}{4} + \frac{8}{4} = \frac{17}{4} \] Now, substituting back: \[ x^3 - \frac{1}{x^3} = \left(-\frac{3}{2}\right) \left(\frac{17}{4}\right) = -\frac{51}{8} \] **For \( x = 2 \):** \[ x - \frac{1}{x} = \frac{3}{2} \] \[ x^2 + \frac{1}{x^2} = \left(\frac{3}{2}\right)^2 + 2 = \frac{9}{4} + 2 = \frac{9}{4} + \frac{8}{4} = \frac{17}{4} \] Now, substituting back: \[ x^3 - \frac{1}{x^3} = \left(\frac{3}{2}\right) \left(\frac{17}{4}\right) = \frac{51}{8} \] ### Final Answers 1. \( x - \frac{1}{x} = -\frac{3}{2} \) or \( \frac{3}{2} \) 2. \( x^3 - \frac{1}{x^3} = -\frac{51}{8} \) or \( \frac{51}{8} \)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 2(x^(2) + 1)= 5x , find x^(3)- (1)/(x^(3))

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

If x=3+2sqrt(2) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)-(1)/(x^(2))

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

If x=2+sqrt(3) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)+(1)/(x^(2))

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x^(3)- (1)/(x^(3))

If x=2sqrt(3)+2sqrt(2) , find : (i) 1/x" (ii) "x+1/x" (iii) "(x+1/x)^(2)

Which of the following are polynomials ? (i) x^(2)-3x+1 " " (ii) x^(2)+5x+2 " "(iii) x-(1)/(y) " " (iv) x^(7)+8 " " (v) x^(3)+sqrt(x)-2 (vi) sqrt(2)x^(2)+x-1 " " (vii) (3x-1)(x+5) " " (viii) (x-(3)/(x))(x+2) " " (ix)2x^(2)-1 (x) x+(1)/(sqrt(x))+2

Evaluate : (i) (3x + (1)/(2) ) (2x + (1)/(3) )