Home
Class 9
MATHS
If x=3+2sqrt(2), find : (i) (1)/(x) (i...

If `x=3+2sqrt(2)`, find :
`(i) (1)/(x)` `(ii) x-(1)/(x)`
`(iii) (x-(1)/(x))^(3)` `(iv)x^(3)-(1)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. Given: \( x = 3 + 2\sqrt{2} \) ### Part (i): Find \( \frac{1}{x} \) 1. Start with the expression for \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \] 2. To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{x} = \frac{1 \cdot (3 - 2\sqrt{2})}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} \] 3. Calculate the denominator using the difference of squares: \[ (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1 \] 4. Thus, \[ \frac{1}{x} = 3 - 2\sqrt{2} \] ### Part (ii): Find \( x - \frac{1}{x} \) 1. Substitute the values of \( x \) and \( \frac{1}{x} \): \[ x - \frac{1}{x} = (3 + 2\sqrt{2}) - (3 - 2\sqrt{2}) \] 2. Simplify: \[ x - \frac{1}{x} = 3 + 2\sqrt{2} - 3 + 2\sqrt{2} = 4\sqrt{2} \] ### Part (iii): Find \( (x - \frac{1}{x})^3 \) 1. Use the result from Part (ii): \[ (x - \frac{1}{x})^3 = (4\sqrt{2})^3 \] 2. Calculate: \[ (4\sqrt{2})^3 = 4^3 \cdot (\sqrt{2})^3 = 64 \cdot 2\sqrt{2} = 128\sqrt{2} \] ### Part (iv): Find \( x^3 - \frac{1}{x^3} \) 1. Use the identity: \[ x^3 - \frac{1}{x^3} = (x - \frac{1}{x})^3 + 3(x - \frac{1}{x}) \] 2. Substitute the values from Part (ii) and Part (iii): \[ x^3 - \frac{1}{x^3} = 128\sqrt{2} + 3(4\sqrt{2}) \] 3. Simplify: \[ x^3 - \frac{1}{x^3} = 128\sqrt{2} + 12\sqrt{2} = 140\sqrt{2} \] ### Summary of Answers: - (i) \( \frac{1}{x} = 3 - 2\sqrt{2} \) - (ii) \( x - \frac{1}{x} = 4\sqrt{2} \) - (iii) \( (x - \frac{1}{x})^3 = 128\sqrt{2} \) - (iv) \( x^3 - \frac{1}{x^3} = 140\sqrt{2} \)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x=3+2sqrt(2) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)-(1)/(x^(2))

If x=2+sqrt(3) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)+(1)/(x^(2))

If x=2sqrt(3)+2sqrt(2) , find : (i) 1/x" (ii) "x+1/x" (iii) "(x+1/x)^(2)

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

If 2(x^(2)+1)=5x , find : (i) x-(1)/(x) (ii) x^(3)-(1)/(x^(3))

If x=sqrt(2)+1 , then find the values of the following : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)+(1)/(x^(2))

Obtain the different coefficient of the following : (i) (x-1)(2x+5) (ii) (1)/(2x+1) (iii) (3x+4)/(4x+5) (iv) (x^(2))/(x^(3)+1)

If x=1-sqrt(2), find the value of (x-1/x)^3

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)

If x=1-sqrt(2) , find the value of (x-1/x)^3