Home
Class 9
MATHS
Prove that : (i) sin 60^(@) = 2 sin 30...

Prove that :
(i) `sin 60^(@) = 2 sin 30^(@) cos 30^(@)`
(ii) `4(sin^(4) 30^(@) + cos^(4) 60^(@)) - 3(cos^(2)45 - sin^(2)90^(@)) = 2`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): Prove that \( \sin 60^\circ = 2 \sin 30^\circ \cos 30^\circ \) **Step 1: Recall the values of sine and cosine.** - We know: - \( \sin 60^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) **Step 2: Substitute the values into the equation.** - The right-hand side of the equation is: \[ 2 \sin 30^\circ \cos 30^\circ = 2 \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) \] **Step 3: Simplify the right-hand side.** - Calculate: \[ 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] **Step 4: Compare both sides.** - We have: \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \quad \text{and} \quad 2 \sin 30^\circ \cos 30^\circ = \frac{\sqrt{3}}{2} \] - Therefore, \( \sin 60^\circ = 2 \sin 30^\circ \cos 30^\circ \) is proved. ### Part (ii): Prove that \( 4(\sin^4 30^\circ + \cos^4 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ) = 2 \) **Step 1: Recall the values of sine and cosine.** - We know: - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 60^\circ = \frac{1}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 90^\circ = 1 \) **Step 2: Calculate \( \sin^4 30^\circ \) and \( \cos^4 60^\circ \).** - Calculate: \[ \sin^4 30^\circ = \left(\frac{1}{2}\right)^4 = \frac{1}{16} \] \[ \cos^4 60^\circ = \left(\frac{1}{2}\right)^4 = \frac{1}{16} \] **Step 3: Substitute these values into the equation.** - The left-hand side becomes: \[ 4\left(\frac{1}{16} + \frac{1}{16}\right) - 3\left(\left(\frac{1}{\sqrt{2}}\right)^2 - 1\right) \] **Step 4: Simplify the first term.** - Calculate: \[ 4\left(\frac{1}{16} + \frac{1}{16}\right) = 4 \cdot \frac{2}{16} = 4 \cdot \frac{1}{8} = \frac{4}{8} = \frac{1}{2} \] **Step 5: Simplify the second term.** - Calculate: \[ \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] \[ \cos^2 45^\circ - \sin^2 90^\circ = \frac{1}{2} - 1 = -\frac{1}{2} \] \[ -3\left(-\frac{1}{2}\right) = \frac{3}{2} \] **Step 6: Combine both terms.** - Now we have: \[ \frac{1}{2} + \frac{3}{2} = 2 \] **Step 7: Conclusion.** - Therefore, \( 4(\sin^4 30^\circ + \cos^4 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ) = 2 \) is proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Prove that : 4(sin^(4)30^(@)+cos^(4)60^(@))-3(cos^(2)45^(@)-sin^(2)90^(@))=2

Prove that : 4(sin^(4)30^(@)+cos^(4)60^(@))-3(cos^(2)45^(@)-sin^(2)90^(@))=2

Verify that : sin 60^@ = 2 sin 30^@ cos 30^@

Prove that : sin60^(@)=2sin30^(@)cos30^(@) .

Prove that : sin60^(@)=2sin30^(@)cos30^(@) .

Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

Find the value of : (i) sin 30^(@)-cos 60^(@) (ii) sin 0^(@)+cos 0^(@)

Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@)