Home
Class 9
MATHS
Evaluate : (i) (cos 3A - 2 cos 4A)/(si...

Evaluate :
(i) `(cos 3A - 2 cos 4A)/(sin 3 A + 2 sin 4A)`, when `A = 15^(@)`
(ii) `(3 sin 3B + 2 cos(2B + 5^(@)))/(2 cos 3B - sin(2B - 10^(@)))`, when `B = 20^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will evaluate each part separately. ### Part (i): Evaluate \((\cos 3A - 2 \cos 4A) / (\sin 3A + 2 \sin 4A)\) when \(A = 15^\circ\) 1. **Substitute \(A = 15^\circ\)**: - Calculate \(3A\) and \(4A\): \[ 3A = 3 \times 15^\circ = 45^\circ \] \[ 4A = 4 \times 15^\circ = 60^\circ \] 2. **Evaluate \(\cos 3A\) and \(\cos 4A\)**: - \(\cos 45^\circ = \frac{1}{\sqrt{2}}\) - \(\cos 60^\circ = \frac{1}{2}\) 3. **Substitute into the numerator**: \[ \cos 3A - 2 \cos 4A = \frac{1}{\sqrt{2}} - 2 \times \frac{1}{2} = \frac{1}{\sqrt{2}} - 1 \] 4. **Evaluate \(\sin 3A\) and \(\sin 4A\)**: - \(\sin 45^\circ = \frac{1}{\sqrt{2}}\) - \(\sin 60^\circ = \frac{\sqrt{3}}{2}\) 5. **Substitute into the denominator**: \[ \sin 3A + 2 \sin 4A = \frac{1}{\sqrt{2}} + 2 \times \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{2}} + \sqrt{3} \] 6. **Combine the results**: \[ \frac{\cos 3A - 2 \cos 4A}{\sin 3A + 2 \sin 4A} = \frac{\frac{1}{\sqrt{2}} - 1}{\frac{1}{\sqrt{2}} + \sqrt{3}} \] 7. **Multiply numerator and denominator by \(\sqrt{2}\)** to simplify: \[ = \frac{1 - \sqrt{2}}{1 + \sqrt{6}} \] ### Final Result for Part (i): \[ \frac{1 - \sqrt{2}}{1 + \sqrt{6}} \] --- ### Part (ii): Evaluate \((3 \sin 3B + 2 \cos(2B + 5^\circ)) / (2 \cos 3B - \sin(2B - 10^\circ))\) when \(B = 20^\circ\) 1. **Substitute \(B = 20^\circ\)**: - Calculate \(3B\) and \(2B\): \[ 3B = 3 \times 20^\circ = 60^\circ \] \[ 2B = 2 \times 20^\circ = 40^\circ \] 2. **Evaluate \(\sin 3B\) and \(\cos 2B + 5^\circ\)**: - \(\sin 60^\circ = \frac{\sqrt{3}}{2}\) - \(\cos(40^\circ + 5^\circ) = \cos 45^\circ = \frac{1}{\sqrt{2}}\) 3. **Substitute into the numerator**: \[ 3 \sin 60^\circ + 2 \cos(2B + 5^\circ) = 3 \times \frac{\sqrt{3}}{2} + 2 \times \frac{1}{\sqrt{2}} = \frac{3\sqrt{3}}{2} + \frac{2}{\sqrt{2}} \] 4. **Evaluate \(\cos 3B\) and \(\sin(2B - 10^\circ)\)**: - \(\cos 60^\circ = \frac{1}{2}\) - \(\sin(40^\circ - 10^\circ) = \sin 30^\circ = \frac{1}{2}\) 5. **Substitute into the denominator**: \[ 2 \cos 60^\circ - \sin(2B - 10^\circ) = 2 \times \frac{1}{2} - \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2} \] 6. **Combine the results**: \[ \frac{3 \sin 60^\circ + 2 \cos(2B + 5^\circ)}{2 \cos 60^\circ - \sin(2B - 10^\circ)} = \frac{\frac{3\sqrt{3}}{2} + \frac{2}{\sqrt{2}}}{\frac{1}{2}} \] 7. **Multiply numerator and denominator by 2**: \[ = 3\sqrt{3} + 2\sqrt{2} \] ### Final Result for Part (ii): \[ 3\sqrt{3} + 2\sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (3sin3B+2cos(2B+5^(@)))/(2cos3B-sin(2B-10^(@))) , when B=20^(@) .

Evaluate : (3sin3B+2cos(2B+5^(@)))/(2cos3B-sin(2B-10^(@))) , when B=20^(@) .

Evaluate : (cos3A-3cos4A)/(sin3A+2sin4A)," when "A=15^(@) .

Evaluate : (cos3A-3cos4A)/(sin3A+2sin4A)," when "A=15^(@) .

Evaluate (cos3 theta-2cos 4theta)/(sin 3 theta+2sin 4theta), when theta=150^(@) .

(cos 2B - cos 2 A)/( sin 2 A + sin 2 B) = tan (A -B).

cos (A +B) + sin (A -B) = 2 sin (45 ^(@) + A) cos ( 45 ^(@) + B).

Prove that (cos A - cos B) ^(2) + (sin A - sin B ) ^(2) = 4 sin ^(2) ((A -B)/( 2 )).

Prove that: (cos2A+cos3A+cos4A)/(sin2A+sin3A+sin4A)= cot3A

Prove that : (i) sin 60^(@) = 2 sin 30^(@) cos 30^(@) (ii) 4(sin^(4) 30^(@) + cos^(4) 60^(@)) - 3(cos^(2)45 - sin^(2)90^(@)) = 2