Home
Class 9
MATHS
If A = 30^(@), show that : (i) (1 + si...

If `A = 30^(@)`, show that :
(i) `(1 + sin 2A + cos 2A)/(sin A + cos A) = 2 cos A`
(ii) `(cos^(3)A - cos 3A)/(cos A) + (sin^(3)A + sin 3A)/(sin A) = 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will break it down into two parts as stated in the question. ### Part (i): Show that \[ \frac{1 + \sin 2A + \cos 2A}{\sin A + \cos A} = 2 \cos A \] where \( A = 30^\circ \). **Step 1: Substitute \( A \) with \( 30^\circ \)** We know: - \( \sin 2A = \sin 60^\circ = \frac{\sqrt{3}}{2} \) - \( \cos 2A = \cos 60^\circ = \frac{1}{2} \) - \( \sin A = \sin 30^\circ = \frac{1}{2} \) - \( \cos A = \cos 30^\circ = \frac{\sqrt{3}}{2} \) Substituting these values into the expression: \[ \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}} \] **Step 2: Simplify the numerator and denominator** Numerator: \[ 1 + \frac{\sqrt{3}}{2} + \frac{1}{2} = 1 + \frac{1 + \sqrt{3}}{2} = \frac{2 + 1 + \sqrt{3}}{2} = \frac{3 + \sqrt{3}}{2} \] Denominator: \[ \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2} \] **Step 3: Substitute back into the expression** Now substituting back into the expression gives: \[ \frac{\frac{3 + \sqrt{3}}{2}}{\frac{1 + \sqrt{3}}{2}} = \frac{3 + \sqrt{3}}{1 + \sqrt{3}} \] **Step 4: Rationalize the denominator** To simplify \(\frac{3 + \sqrt{3}}{1 + \sqrt{3}}\), we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(3 + \sqrt{3})(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{(3 + \sqrt{3} - 3\sqrt{3} - 3)}{1 - 3} = \frac{-2\sqrt{3}}{-2} = \sqrt{3} \] **Step 5: Calculate \(2 \cos A\)** Now we calculate \(2 \cos A\): \[ 2 \cos 30^\circ = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] **Conclusion for Part (i):** Thus, we have shown that: \[ \frac{1 + \sin 2A + \cos 2A}{\sin A + \cos A} = 2 \cos A \] ### Part (ii): Show that \[ \frac{\cos^3 A - \cos 3A}{\cos A} + \frac{\sin^3 A + \sin 3A}{\sin A} = 3 \] **Step 1: Substitute \( A \) with \( 30^\circ \)** We know: - \( \cos 3A = \cos 90^\circ = 0 \) - \( \sin 3A = \sin 90^\circ = 1 \) Substituting these values into the expression: \[ \frac{\cos^3 30^\circ - 0}{\cos 30^\circ} + \frac{\sin^3 30^\circ + 1}{\sin 30^\circ} \] **Step 2: Calculate \( \cos^3 30^\circ \) and \( \sin^3 30^\circ \)** Calculating the values: - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 30^\circ = \frac{1}{2} \) Now substituting these values: \[ \frac{\left(\frac{\sqrt{3}}{2}\right)^3}{\frac{\sqrt{3}}{2}} + \frac{\left(\frac{1}{2}\right)^3 + 1}{\frac{1}{2}} \] **Step 3: Simplify each term** First term: \[ \frac{\frac{3\sqrt{3}}{8}}{\frac{\sqrt{3}}{2}} = \frac{3\sqrt{3}}{8} \cdot \frac{2}{\sqrt{3}} = \frac{3 \cdot 2}{8} = \frac{6}{8} = \frac{3}{4} \] Second term: \[ \frac{\frac{1}{8} + 1}{\frac{1}{2}} = \frac{\frac{1 + 8}{8}}{\frac{1}{2}} = \frac{\frac{9}{8}}{\frac{1}{2}} = \frac{9}{8} \cdot 2 = \frac{18}{8} = \frac{9}{4} \] **Step 4: Combine the results** Now adding both terms: \[ \frac{3}{4} + \frac{9}{4} = \frac{12}{4} = 3 \] **Conclusion for Part (ii):** Thus, we have shown that: \[ \frac{\cos^3 A - \cos 3A}{\cos A} + \frac{\sin^3 A + \sin 3A}{\sin A} = 3 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

If A=30^(@) , show that : (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

Show that sin 3 A + sin 2A -sin A = 4 sin A cos (A)/(2) cos "" (3A)/( 2)

Show that : sin^8 A-cos^8 A = (sin^2 A - cos^2 A) (1-2 sin^2 A*cos^2 A)

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

( sin A + sin 3A + sin 5A + sin 7A)/(cos A + cos 3 A + cos 5 A + cos 7A) = tan 4A.

Prove that (cos ^(3) A - sin ^(3) A)/( cos A - sin A ) = (2 + sin 2 A)/( 2 ).

Prove that: (sin3A cos4A-sin Acos2A)/(sin4A sin A+cos6A cos A)=tan2A

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

Prove that : cos^3 A cos 3A + sin^3 A sin 3A = cos^3 2A

Prove that: (sin5A cos2A-sin6A\ cos A)/(sin A\ sin2A-cos2A cos3A)=t a n A