Home
Class 9
MATHS
Calculate the value of A, if : (i) (ta...

Calculate the value of A, if :
(i) `(tan A - 1).("cosec 3A" - 1) = 0`
(ii) `cos 3A.(2 sin 2A - 1) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will break it down into two parts as given in the question. ### Part (i): Solve `(tan A - 1)(cosec 3A - 1) = 0` 1. **Set each factor to zero**: \[ tan A - 1 = 0 \quad \text{or} \quad cosec 3A - 1 = 0 \] 2. **Solve the first equation**: \[ tan A = 1 \] The angle for which the tangent is 1 is: \[ A = 45^\circ + n \cdot 180^\circ \quad (n \in \mathbb{Z}) \] 3. **Solve the second equation**: \[ cosec 3A = 1 \] This implies: \[ sin 3A = 1 \] The angle for which the sine is 1 is: \[ 3A = 90^\circ + m \cdot 360^\circ \quad (m \in \mathbb{Z}) \] Thus, \[ A = 30^\circ + m \cdot 120^\circ \] 4. **Combine the results**: From the first equation, we have \(A = 45^\circ\) and from the second equation, we have \(A = 30^\circ\). ### Part (ii): Solve `cos 3A(2 sin 2A - 1) = 0` 1. **Set each factor to zero**: \[ cos 3A = 0 \quad \text{or} \quad 2 sin 2A - 1 = 0 \] 2. **Solve the first equation**: \[ cos 3A = 0 \] The angles for which the cosine is 0 are: \[ 3A = 90^\circ + k \cdot 180^\circ \quad (k \in \mathbb{Z}) \] Thus, \[ A = 30^\circ + k \cdot 60^\circ \] 3. **Solve the second equation**: \[ 2 sin 2A = 1 \quad \Rightarrow \quad sin 2A = \frac{1}{2} \] The angles for which the sine is \( \frac{1}{2} \) are: \[ 2A = 30^\circ + p \cdot 360^\circ \quad \text{or} \quad 2A = 150^\circ + p \cdot 360^\circ \quad (p \in \mathbb{Z}) \] Thus, \[ A = 15^\circ + p \cdot 180^\circ \quad \text{or} \quad A = 75^\circ + p \cdot 180^\circ \] 4. **Combine the results**: From the first equation, we have \(A = 30^\circ\) and \(A = 90^\circ\) (not valid since it exceeds 90 degrees for our context). From the second equation, we have \(A = 15^\circ\) and \(A = 75^\circ\). ### Final Results: - From Part (i): \(A = 45^\circ\) and \(A = 30^\circ\) - From Part (ii): \(A = 30^\circ\) and \(A = 15^\circ\) and \(A = 75^\circ\)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Calculate the value of A, if : (tanA-1)(cosec3A-1)=0

Calculate the value of A, if : cos3A.(2sin2A-1)=0

Calculate the value of A, if : cos3A.(2sin2A-1)=0

Calculate the value of A, if : (sec2A-1)(cosec3A-1)=0

Calculate the value of A, if : (cosec2A-2)(cot3A-1)=0

Calculate the value of A, if : (cosec2A-2)(cot3A-1)=0

Find the magnitude of angle A, if : (i) 2 cos^(2)A - 3 cos A + 1 = 0 (ii) 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A

Find the value of : (i) (tan 45^(@))/("cosec 30"^(@)) + (sec 60^(@))/(cot 45^(@)) - (5 sin 90^(@))/(2 cos 0^(@)) (ii) 3 sin^(2)30^(@) + 2 tan^(2)60^(@) - 5 cot^(2)45

Prove that : sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A.

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is