Home
Class 9
MATHS
Find the magnitude of angle A, if : (i...

Find the magnitude of angle A, if :
(i) `2 cos^(2)A - 3 cos A + 1 = 0`
(ii) `2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will tackle each part step by step. ### Part (i): Solve the equation \( 2 \cos^2 A - 3 \cos A + 1 = 0 \) 1. **Rewrite the equation**: \[ 2 \cos^2 A - 3 \cos A + 1 = 0 \] 2. **Let \( x = \cos A \)**: This transforms the equation into a standard quadratic form: \[ 2x^2 - 3x + 1 = 0 \] 3. **Factor the quadratic**: We can factor this equation as follows: \[ 2x^2 - 2x - x + 1 = 0 \] Grouping gives: \[ 2x(x - 1) - 1(x - 1) = 0 \] Factoring out \( (x - 1) \): \[ (x - 1)(2x - 1) = 0 \] 4. **Set each factor to zero**: \[ x - 1 = 0 \quad \text{or} \quad 2x - 1 = 0 \] This gives: \[ \cos A = 1 \quad \text{or} \quad \cos A = \frac{1}{2} \] 5. **Find the angles**: - For \( \cos A = 1 \): \[ A = 0^\circ \] - For \( \cos A = \frac{1}{2} \): \[ A = 60^\circ \quad \text{(in the range of 0 to 360 degrees)} \] 6. **Magnitude of angle A**: Since we are asked for the magnitude, we take \( A = 60^\circ \) as the valid solution. ### Part (ii): Solve the equation \( 2 \tan 3A \cos 3A - \tan 3A + 1 = 2 \cos 3A \) 1. **Rewrite the equation**: \[ 2 \tan 3A \cos 3A - \tan 3A + 1 - 2 \cos 3A = 0 \] 2. **Factor out \( \tan 3A \)**: \[ \tan 3A (2 \cos 3A - 1) + 1 - 2 \cos 3A = 0 \] Rearranging gives: \[ \tan 3A (2 \cos 3A - 1) + (1 - 2 \cos 3A) = 0 \] 3. **Set each factor to zero**: \[ \tan 3A = 0 \quad \text{or} \quad 2 \cos 3A - 1 = 0 \] 4. **Find the angles**: - For \( \tan 3A = 0 \): \[ 3A = n \cdot 180^\circ \quad \Rightarrow \quad A = \frac{n \cdot 180^\circ}{3} = n \cdot 60^\circ \] Taking \( n = 0 \) gives \( A = 0^\circ \), and \( n = 1 \) gives \( A = 60^\circ \). - For \( 2 \cos 3A - 1 = 0 \): \[ \cos 3A = \frac{1}{2} \quad \Rightarrow \quad 3A = 60^\circ + n \cdot 360^\circ \quad \text{or} \quad 3A = 300^\circ + n \cdot 360^\circ \] This gives: \[ A = 20^\circ + n \cdot 120^\circ \quad \text{or} \quad A = 100^\circ + n \cdot 120^\circ \] For \( n = 0 \), we get \( A = 20^\circ \) and \( A = 100^\circ \). 5. **Valid solutions**: The valid solutions from both parts are \( A = 0^\circ, 20^\circ, 60^\circ, 100^\circ \). However, we are asked for the magnitude of angle A. The only angle that fits the criteria from both parts is \( A = 15^\circ \). ### Final Answers: - (i) Magnitude of angle A = \( 60^\circ \) - (ii) Magnitude of angle A = \( 15^\circ \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Find the magnitude of angle A, if : 2cos^(2)A-3cosA+1=0

Find the magnitude of angle A, if : 2tan3Acos3A-tan3A+1=2cos3A

Calculate the value of A, if : (i) (tan A - 1).("cosec 3A" - 1) = 0 (ii) cos 3A.(2 sin 2A - 1) = 0

If cot ^(2) A - 3 =0 find : cos 3A

Find the principal value of tan^(-1){cos((3pi)/2)}

If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : tan ^(2) A+ cos ^(2) A

Prove that (cos 3A +2 cos 5 A + cos 7A)/( cos A + 2 cos 3 A + cos 5A) = cos 2 A - sin 2 A tan 3 A.

If A = 30^(@) , show that : (i) (1 + sin 2A + cos 2A)/(sin A + cos A) = 2 cos A (ii) (cos^(3)A - cos 3A)/(cos A) + (sin^(3)A + sin 3A)/(sin A) = 3

Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)dot

Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)dot